mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
debugging
This commit is contained in:
parent
70d6be45ed
commit
3258d2be0a
@ -43,6 +43,7 @@ from funasr.models.frontend.wav_frontend import WavFrontend
|
|||||||
from funasr.models.e2e_asr_paraformer import BiCifParaformer, ContextualParaformer
|
from funasr.models.e2e_asr_paraformer import BiCifParaformer, ContextualParaformer
|
||||||
from funasr.export.models.e2e_asr_paraformer import Paraformer as Paraformer_export
|
from funasr.export.models.e2e_asr_paraformer import Paraformer as Paraformer_export
|
||||||
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
|
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
|
||||||
|
from funasr.bin.tp_inference import SpeechText2Timestamp
|
||||||
|
|
||||||
|
|
||||||
class Speech2Text:
|
class Speech2Text:
|
||||||
@ -540,7 +541,8 @@ def inference(
|
|||||||
ngram_weight: float = 0.9,
|
ngram_weight: float = 0.9,
|
||||||
nbest: int = 1,
|
nbest: int = 1,
|
||||||
num_workers: int = 1,
|
num_workers: int = 1,
|
||||||
|
timestamp_infer_config: Union[Path, str] = None,
|
||||||
|
timestamp_model_file: Union[Path, str] = None,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
inference_pipeline = inference_modelscope(
|
inference_pipeline = inference_modelscope(
|
||||||
@ -604,6 +606,8 @@ def inference_modelscope(
|
|||||||
nbest: int = 1,
|
nbest: int = 1,
|
||||||
num_workers: int = 1,
|
num_workers: int = 1,
|
||||||
output_dir: Optional[str] = None,
|
output_dir: Optional[str] = None,
|
||||||
|
timestamp_infer_config: Union[Path, str] = None,
|
||||||
|
timestamp_model_file: Union[Path, str] = None,
|
||||||
param_dict: dict = None,
|
param_dict: dict = None,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
@ -661,6 +665,15 @@ def inference_modelscope(
|
|||||||
else:
|
else:
|
||||||
speech2text = Speech2Text(**speech2text_kwargs)
|
speech2text = Speech2Text(**speech2text_kwargs)
|
||||||
|
|
||||||
|
if timestamp_model_file is not None:
|
||||||
|
speechtext2timestamp = SpeechText2Timestamp(
|
||||||
|
timestamp_cmvn_file=cmvn_file,
|
||||||
|
timestamp_model_file=timestamp_model_file,
|
||||||
|
timestamp_infer_config=timestamp_infer_config,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
speechtext2timestamp = None
|
||||||
|
|
||||||
def _forward(
|
def _forward(
|
||||||
data_path_and_name_and_type,
|
data_path_and_name_and_type,
|
||||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||||
@ -743,8 +756,16 @@ def inference_modelscope(
|
|||||||
|
|
||||||
key = keys[batch_id]
|
key = keys[batch_id]
|
||||||
for n, result in zip(range(1, nbest + 1), result):
|
for n, result in zip(range(1, nbest + 1), result):
|
||||||
|
# import pdb; pdb.set_trace()
|
||||||
text, token, token_int, hyp = result[0], result[1], result[2], result[3]
|
text, token, token_int, hyp = result[0], result[1], result[2], result[3]
|
||||||
time_stamp = None if len(result) < 5 else result[4]
|
time_stamp = None if len(result) < 5 else result[4]
|
||||||
|
# conduct timestamp prediction here
|
||||||
|
if time_stamp is None and speechtext2timestamp:
|
||||||
|
ts_batch = {}
|
||||||
|
ts_batch['speech'] = batch['speech'][batch_id].squeeze(0)
|
||||||
|
ts_batch['speech_lengths'] = torch.tensor([batch['speech_lengths'][batch_id]])
|
||||||
|
ts_batch['text_lengths'] = torch.tensor([len(token)])
|
||||||
|
import pdb; pdb.set_trace()
|
||||||
# Create a directory: outdir/{n}best_recog
|
# Create a directory: outdir/{n}best_recog
|
||||||
if writer is not None:
|
if writer is not None:
|
||||||
ibest_writer = writer[f"{n}best_recog"]
|
ibest_writer = writer[f"{n}best_recog"]
|
||||||
|
|||||||
@ -674,6 +674,7 @@ def inference_modelscope(
|
|||||||
ibest_writer["time_stamp"][key] = "{}".format(time_stamp_postprocessed)
|
ibest_writer["time_stamp"][key] = "{}".format(time_stamp_postprocessed)
|
||||||
|
|
||||||
logging.info("decoding, utt: {}, predictions: {}".format(key, text_postprocessed_punc))
|
logging.info("decoding, utt: {}, predictions: {}".format(key, text_postprocessed_punc))
|
||||||
|
import pdb; pdb.set_trace()
|
||||||
return asr_result_list
|
return asr_result_list
|
||||||
|
|
||||||
return _forward
|
return _forward
|
||||||
|
|||||||
28
test.py
Normal file
28
test.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
from modelscope.pipelines import pipeline
|
||||||
|
from modelscope.utils.constant import Tasks
|
||||||
|
|
||||||
|
'''
|
||||||
|
inference_pipeline = pipeline(
|
||||||
|
task=Tasks.auto_speech_recognition,
|
||||||
|
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
||||||
|
timestamp_model='damo/speech_timestamp_prediction-v1-16k-offline',
|
||||||
|
timestamp_model_revision='v1.0.3',
|
||||||
|
)
|
||||||
|
|
||||||
|
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
|
||||||
|
print(rec_result)
|
||||||
|
'''
|
||||||
|
|
||||||
|
from modelscope.pipelines import pipeline
|
||||||
|
from modelscope.utils.constant import Tasks
|
||||||
|
|
||||||
|
inference_pipeline = pipeline(
|
||||||
|
task=Tasks.auto_speech_recognition,
|
||||||
|
model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
||||||
|
vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
|
||||||
|
vad_model_revision="v1.1.8",
|
||||||
|
punc_model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
|
||||||
|
punc_model_revision="v1.1.6")
|
||||||
|
|
||||||
|
rec_result = inference_pipeline(audio_in='/Users/shixian/Downloads/test.wav')
|
||||||
|
print(rec_result)
|
||||||
Loading…
Reference in New Issue
Block a user