mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
fbank online
This commit is contained in:
parent
33ca30ce6a
commit
2d7bd18d0e
180
funasr/models/frontend/wav_frontend_kaldifeat.py
Normal file
180
funasr/models/frontend/wav_frontend_kaldifeat.py
Normal file
@ -0,0 +1,180 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
# Part of the implementation is borrowed from espnet/espnet.
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
from funasr.models.frontend.abs_frontend import AbsFrontend
|
||||
from typeguard import check_argument_types
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
import kaldifeat
|
||||
|
||||
def load_cmvn(cmvn_file):
|
||||
with open(cmvn_file, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
means_list = []
|
||||
vars_list = []
|
||||
for i in range(len(lines)):
|
||||
line_item = lines[i].split()
|
||||
if line_item[0] == '<AddShift>':
|
||||
line_item = lines[i + 1].split()
|
||||
if line_item[0] == '<LearnRateCoef>':
|
||||
add_shift_line = line_item[3:(len(line_item) - 1)]
|
||||
means_list = list(add_shift_line)
|
||||
continue
|
||||
elif line_item[0] == '<Rescale>':
|
||||
line_item = lines[i + 1].split()
|
||||
if line_item[0] == '<LearnRateCoef>':
|
||||
rescale_line = line_item[3:(len(line_item) - 1)]
|
||||
vars_list = list(rescale_line)
|
||||
continue
|
||||
means = np.array(means_list).astype(np.float)
|
||||
vars = np.array(vars_list).astype(np.float)
|
||||
cmvn = np.array([means, vars])
|
||||
cmvn = torch.as_tensor(cmvn)
|
||||
return cmvn
|
||||
|
||||
|
||||
def apply_cmvn(inputs, cmvn_file): # noqa
|
||||
"""
|
||||
Apply CMVN with mvn data
|
||||
"""
|
||||
|
||||
device = inputs.device
|
||||
dtype = inputs.dtype
|
||||
frame, dim = inputs.shape
|
||||
|
||||
cmvn = load_cmvn(cmvn_file)
|
||||
means = np.tile(cmvn[0:1, :dim], (frame, 1))
|
||||
vars = np.tile(cmvn[1:2, :dim], (frame, 1))
|
||||
inputs += torch.from_numpy(means).type(dtype).to(device)
|
||||
inputs *= torch.from_numpy(vars).type(dtype).to(device)
|
||||
|
||||
return inputs.type(torch.float32)
|
||||
|
||||
|
||||
def apply_lfr(inputs, lfr_m, lfr_n):
|
||||
LFR_inputs = []
|
||||
T = inputs.shape[0]
|
||||
T_lfr = int(np.ceil(T / lfr_n))
|
||||
left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1)
|
||||
inputs = torch.vstack((left_padding, inputs))
|
||||
T = T + (lfr_m - 1) // 2
|
||||
for i in range(T_lfr):
|
||||
if lfr_m <= T - i * lfr_n:
|
||||
LFR_inputs.append((inputs[i * lfr_n:i * lfr_n + lfr_m]).view(1, -1))
|
||||
else: # process last LFR frame
|
||||
num_padding = lfr_m - (T - i * lfr_n)
|
||||
frame = (inputs[i * lfr_n:]).view(-1)
|
||||
for _ in range(num_padding):
|
||||
frame = torch.hstack((frame, inputs[-1]))
|
||||
LFR_inputs.append(frame)
|
||||
LFR_outputs = torch.vstack(LFR_inputs)
|
||||
return LFR_outputs.type(torch.float32)
|
||||
|
||||
|
||||
class WavFrontend_kaldifeat(AbsFrontend):
|
||||
"""Conventional frontend structure for ASR.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cmvn_file: str = None,
|
||||
fs: int = 16000,
|
||||
window: str = 'hamming',
|
||||
n_mels: int = 80,
|
||||
frame_length: int = 25,
|
||||
frame_shift: int = 10,
|
||||
lfr_m: int = 1,
|
||||
lfr_n: int = 1,
|
||||
dither: float = 1.0,
|
||||
snip_edges: bool = True,
|
||||
upsacle_samples: bool = True,
|
||||
device: str = 'cpu',
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.samp_freq = fs
|
||||
opts.frame_opts.dither = dither
|
||||
opts.frame_opts.window_type = window
|
||||
opts.frame_opts.frame_shift_ms = float(frame_shift)
|
||||
opts.frame_opts.frame_length_ms = float(frame_length)
|
||||
opts.mel_opts.num_bins = n_mels
|
||||
opts.energy_floor = 0
|
||||
opts.frame_opts.snip_edges = snip_edges
|
||||
opts.mel_opts.debug_mel = False
|
||||
self.opts = opts
|
||||
self.fbank_fn = None
|
||||
self.fbank_beg_idx = 0
|
||||
self.reset_fbank_status()
|
||||
|
||||
self.lfr_m = lfr_m
|
||||
self.lfr_n = lfr_n
|
||||
self.cmvn_file = cmvn_file
|
||||
self.upsacle_samples = upsacle_samples
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self.n_mels * self.lfr_m
|
||||
|
||||
def forward_fbank(
|
||||
self,
|
||||
input: torch.Tensor,
|
||||
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
batch_size = input.size(0)
|
||||
feats = []
|
||||
feats_lens = []
|
||||
for i in range(batch_size):
|
||||
waveform_length = input_lengths[i]
|
||||
waveform = input[i][:waveform_length]
|
||||
waveform = waveform * (1 << 15)
|
||||
|
||||
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
|
||||
frames = self.fbank_fn.num_frames_ready
|
||||
frames_cur = frames - self.fbank_beg_idx
|
||||
mat = torch.empty([frames_cur, self.opts.mel_opts.num_bins], dtype=torch.float32).to(
|
||||
device=self.opts.device)
|
||||
for i in range(self.fbank_beg_idx, frames):
|
||||
mat[i, :] = self.fbank_fn.get_frame(i)
|
||||
self.fbank_beg_idx += frames_cur
|
||||
|
||||
feat_length = mat.size(0)
|
||||
feats.append(mat)
|
||||
feats_lens.append(feat_length)
|
||||
|
||||
feats_lens = torch.as_tensor(feats_lens)
|
||||
feats_pad = pad_sequence(feats,
|
||||
batch_first=True,
|
||||
padding_value=0.0)
|
||||
return feats_pad, feats_lens
|
||||
|
||||
def reset_fbank_status(self):
|
||||
self.fbank_fn = kaldifeat.OnlineFbank(self.opts)
|
||||
self.fbank_beg_idx = 0
|
||||
|
||||
def forward_lfr_cmvn(
|
||||
self,
|
||||
input: torch.Tensor,
|
||||
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
batch_size = input.size(0)
|
||||
feats = []
|
||||
feats_lens = []
|
||||
for i in range(batch_size):
|
||||
mat = input[i, :input_lengths[i], :]
|
||||
if self.lfr_m != 1 or self.lfr_n != 1:
|
||||
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
|
||||
if self.cmvn_file is not None:
|
||||
mat = apply_cmvn(mat, self.cmvn_file)
|
||||
feat_length = mat.size(0)
|
||||
feats.append(mat)
|
||||
feats_lens.append(feat_length)
|
||||
|
||||
feats_lens = torch.as_tensor(feats_lens)
|
||||
feats_pad = pad_sequence(feats,
|
||||
batch_first=True,
|
||||
padding_value=0.0)
|
||||
return feats_pad, feats_lens
|
||||
@ -76,7 +76,7 @@ class WavFrontend():
|
||||
mat = np.empty([frames, self.opts.mel_opts.num_bins])
|
||||
for i in range(self.fbank_beg_idx, frames):
|
||||
mat[i, :] = self.fbank_fn.get_frame(i)
|
||||
self.fbank_beg_idx += (frames-self.fbank_beg_idx)
|
||||
# self.fbank_beg_idx += (frames-self.fbank_beg_idx)
|
||||
feat = mat.astype(np.float32)
|
||||
feat_len = np.array(mat.shape[0]).astype(np.int32)
|
||||
return feat, feat_len
|
||||
|
||||
Loading…
Reference in New Issue
Block a user