mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Dev gzf exp (#1647)
* sensevoice finetune * sensevoice finetune * sensevoice finetune * sensevoice finetune * sensevoice finetune * sensevoice finetune * sensevoice finetune * sensevoice finetune * sensevoice finetune * sensevoice finetune * bugfix * update with main (#1631) * update seaco finetune * v1.0.24 --------- Co-authored-by: 维石 <shixian.shi@alibaba-inc.com> * sensevoice * sensevoice * sensevoice * update with main (#1638) * update seaco finetune * v1.0.24 * update rwkv template --------- Co-authored-by: 维石 <shixian.shi@alibaba-inc.com> * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sensevoice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice * sense voice --------- Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
This commit is contained in:
parent
0a4a1d5257
commit
2ac38adbe5
@ -176,15 +176,12 @@ def main(**kwargs):
|
|||||||
except:
|
except:
|
||||||
writer = None
|
writer = None
|
||||||
|
|
||||||
# if use_ddp or use_fsdp:
|
|
||||||
# context = Join([model])
|
|
||||||
# else:
|
|
||||||
# context = nullcontext()
|
|
||||||
context = nullcontext()
|
|
||||||
for epoch in range(trainer.start_epoch, trainer.max_epoch + 1):
|
for epoch in range(trainer.start_epoch, trainer.max_epoch + 1):
|
||||||
time1 = time.perf_counter()
|
time1 = time.perf_counter()
|
||||||
with context:
|
|
||||||
dataloader_tr, dataloader_val = dataloader.build_iter(epoch)
|
for data_split_i in range(dataloader.data_split_num):
|
||||||
|
dataloader_tr, dataloader_val = dataloader.build_iter(epoch, data_split_i=data_split_i)
|
||||||
trainer.train_epoch(
|
trainer.train_epoch(
|
||||||
model=model,
|
model=model,
|
||||||
optim=optim,
|
optim=optim,
|
||||||
@ -193,15 +190,17 @@ def main(**kwargs):
|
|||||||
dataloader_train=dataloader_tr,
|
dataloader_train=dataloader_tr,
|
||||||
dataloader_val=dataloader_val,
|
dataloader_val=dataloader_val,
|
||||||
epoch=epoch,
|
epoch=epoch,
|
||||||
writer=writer
|
writer=writer,
|
||||||
|
data_split_i=data_split_i,
|
||||||
|
data_split_num=dataloader.data_split_num,
|
||||||
)
|
)
|
||||||
with context:
|
|
||||||
trainer.validate_epoch(
|
trainer.validate_epoch(
|
||||||
model=model,
|
model=model,
|
||||||
dataloader_val=dataloader_val,
|
dataloader_val=dataloader_val,
|
||||||
epoch=epoch,
|
epoch=epoch,
|
||||||
writer=writer
|
writer=writer
|
||||||
)
|
)
|
||||||
scheduler.step()
|
scheduler.step()
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -2,8 +2,9 @@ import os
|
|||||||
import json
|
import json
|
||||||
import torch
|
import torch
|
||||||
import logging
|
import logging
|
||||||
import concurrent.futures
|
|
||||||
import librosa
|
import librosa
|
||||||
|
import random
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
|
|
||||||
from funasr.register import tables
|
from funasr.register import tables
|
||||||
@ -44,7 +45,7 @@ from funasr.register import tables
|
|||||||
# except:
|
# except:
|
||||||
# rank = 0
|
# rank = 0
|
||||||
# world_size = 1
|
# world_size = 1
|
||||||
# logging.warning("distributed is not initialized, only single shard")
|
# logging.info("distributed is not initialized, only single shard")
|
||||||
# num_per_rank = total_num // world_size
|
# num_per_rank = total_num // world_size
|
||||||
#
|
#
|
||||||
# # rank = 0
|
# # rank = 0
|
||||||
@ -72,6 +73,7 @@ from funasr.register import tables
|
|||||||
|
|
||||||
@tables.register("index_ds_classes", "IndexDSJsonl")
|
@tables.register("index_ds_classes", "IndexDSJsonl")
|
||||||
@tables.register("index_ds_classes", "IndexDSJsonlRankFull")
|
@tables.register("index_ds_classes", "IndexDSJsonlRankFull")
|
||||||
|
@tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
|
||||||
class IndexDSJsonlRankFull(torch.utils.data.Dataset):
|
class IndexDSJsonlRankFull(torch.utils.data.Dataset):
|
||||||
|
|
||||||
def __init__(self, path: str, **kwargs):
|
def __init__(self, path: str, **kwargs):
|
||||||
@ -80,83 +82,27 @@ class IndexDSJsonlRankFull(torch.utils.data.Dataset):
|
|||||||
self.min_source_length = kwargs.get("min_source_length", 0)
|
self.min_source_length = kwargs.get("min_source_length", 0)
|
||||||
self.max_target_length = kwargs.get("max_target_length", 2048)
|
self.max_target_length = kwargs.get("max_target_length", 2048)
|
||||||
self.min_target_length = kwargs.get("min_target_length", 0)
|
self.min_target_length = kwargs.get("min_target_length", 0)
|
||||||
if isinstance(path, (list, tuple)): # wav.scp, text.txt/text.trans
|
|
||||||
from funasr.datasets.audio_datasets.scp2jsonl import gen_jsonl_from_wav_text_list
|
|
||||||
jsonl_outdir = os.path.dirname(path[0])
|
|
||||||
jsonl_name = "datalist_train.jsonl" if kwargs.get("is_training", True) else "datalist_val.jsonl"
|
|
||||||
jsonl_file_out = os.path.join(jsonl_outdir, jsonl_name)
|
|
||||||
if not os.path.exists(jsonl_file_out):
|
|
||||||
print(f"datalist is: {path}, generate jsonl from it")
|
|
||||||
gen_jsonl_from_wav_text_list(path, jsonl_file_out=jsonl_file_out, **kwargs)
|
|
||||||
path = jsonl_file_out
|
|
||||||
|
|
||||||
contents = []
|
is_training = kwargs.get("is_training", True)
|
||||||
with open(path, encoding='utf-8') as fin:
|
if not (path.endswith(".jsonl") or path.endswith(".json")):
|
||||||
for line in fin:
|
# jsonl list file
|
||||||
data = json.loads(line.strip())
|
data_split_num = kwargs.get("data_split_num", 1)
|
||||||
if "text" in data: # for sft
|
data_split_i = kwargs.get("data_split_i", 0)
|
||||||
contents.append(data['text'])
|
|
||||||
if "source" in data: # for speech lab pretrain
|
|
||||||
prompt = data.get("prompt", "<ASR>")
|
|
||||||
source = data["source"]
|
|
||||||
target = data["target"]
|
|
||||||
source_len = data.get("source_len", 1)
|
|
||||||
target_len = data.get("target_len", 0)
|
|
||||||
if "aishell" in source:
|
|
||||||
target = target.replace(" ", "")
|
|
||||||
if source_len < self.min_source_length or source_len > self.max_source_length:
|
|
||||||
continue
|
|
||||||
if target_len < self.min_target_length or target_len > self.max_target_length:
|
|
||||||
continue
|
|
||||||
contents_i = {"source": source,
|
|
||||||
"prompt": prompt,
|
|
||||||
"target": target,
|
|
||||||
"source_len": source_len,
|
|
||||||
"target_len": target_len,
|
|
||||||
}
|
|
||||||
text_language = data.get("text_language", None)
|
|
||||||
if text_language is not None:
|
|
||||||
contents_i["text_language"] = text_language
|
|
||||||
audio_language = data.get("audio_language", None)
|
|
||||||
if audio_language is not None:
|
|
||||||
contents_i["audio_language"] = audio_language
|
|
||||||
contents.append(contents_i)
|
|
||||||
|
|
||||||
self.contents = contents
|
if not is_training:
|
||||||
|
data_split_num = 1
|
||||||
|
data_split_i = 0
|
||||||
|
with open(path, encoding='utf-8') as fin:
|
||||||
|
file_list_all = fin.readlines()
|
||||||
|
|
||||||
logging.info(
|
num_per_slice = len(file_list_all) // data_split_num
|
||||||
"total_num of samplers across ranks: {}".format(len(self.contents)))
|
file_list = file_list_all[data_split_i * num_per_slice:(data_split_i + 1) * num_per_slice]
|
||||||
|
logging.info(
|
||||||
|
f"is_training: {is_training}, data_split_num: {data_split_num}, data_split_i: {data_split_i}, \nfile_list: {file_list}, \nfile_list_all: {file_list_all}")
|
||||||
|
|
||||||
def __len__(self):
|
else:
|
||||||
return len(self.contents)
|
file_list = [path]
|
||||||
|
|
||||||
def __getitem__(self, index):
|
|
||||||
try:
|
|
||||||
data = self.contents[index]
|
|
||||||
except:
|
|
||||||
print(index)
|
|
||||||
return data
|
|
||||||
|
|
||||||
def get_source_len(self, data_dict):
|
|
||||||
return data_dict.get("source_len", 1)
|
|
||||||
|
|
||||||
def get_target_len(self, data_dict):
|
|
||||||
|
|
||||||
return data_dict.get("target_len", 0)
|
|
||||||
|
|
||||||
|
|
||||||
@tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
|
|
||||||
class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
|
|
||||||
|
|
||||||
def __init__(self, path: str, **kwargs):
|
|
||||||
super().__init__()
|
|
||||||
self.max_source_length = kwargs.get("max_source_length", 2048)
|
|
||||||
self.min_source_length = kwargs.get("min_source_length", 0)
|
|
||||||
self.max_target_length = kwargs.get("max_target_length", 2048)
|
|
||||||
self.min_target_length = kwargs.get("min_target_length", 0)
|
|
||||||
|
|
||||||
with open(path, encoding='utf-8') as fin:
|
|
||||||
file_list = fin.readlines()
|
|
||||||
|
|
||||||
total_num = len(file_list)
|
total_num = len(file_list)
|
||||||
try:
|
try:
|
||||||
@ -165,16 +111,30 @@ class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
|
|||||||
except:
|
except:
|
||||||
rank = 0
|
rank = 0
|
||||||
world_size = 1
|
world_size = 1
|
||||||
logging.warning("distributed is not initialized, only single shard")
|
logging.info("distributed is not initialized, only single shard")
|
||||||
|
|
||||||
|
if not kwargs.get("rank_split", False):
|
||||||
|
logging.info(f"Warning, rank_split disenabled, batch and shuffle data in global")
|
||||||
|
rank = 0
|
||||||
|
world_size = 1
|
||||||
|
|
||||||
num_per_rank = total_num // world_size
|
num_per_rank = total_num // world_size
|
||||||
if num_per_rank * world_size < total_num:
|
if num_per_rank * world_size < total_num:
|
||||||
logging.warning(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
|
logging.info(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
|
||||||
|
total_num_needed = num_per_rank * world_size
|
||||||
|
|
||||||
|
extra_num = total_num_needed - total_num
|
||||||
|
file_list_tmp = random.choices(file_list, k=extra_num)
|
||||||
|
file_list += file_list_tmp
|
||||||
|
logging.info(f"Warning, after random choices: {file_list}")
|
||||||
|
|
||||||
file_list_rank = file_list[rank * num_per_rank:(rank + 1) * num_per_rank]
|
file_list_rank = file_list[rank * num_per_rank:(rank + 1) * num_per_rank]
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"is_training: {is_training}, file_list_rank: {file_list_rank}")
|
||||||
|
|
||||||
contents = []
|
contents = []
|
||||||
for file_json in file_list_rank:
|
for file_json in file_list_rank:
|
||||||
|
|
||||||
with open(file_json.strip(), encoding='utf-8') as fin:
|
with open(file_json.strip(), encoding='utf-8') as fin:
|
||||||
for line in fin:
|
for line in fin:
|
||||||
data = json.loads(line.strip())
|
data = json.loads(line.strip())
|
||||||
@ -182,41 +142,42 @@ class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
|
|||||||
contents.append(data['text'])
|
contents.append(data['text'])
|
||||||
if "source" in data: # for speech lab pretrain
|
if "source" in data: # for speech lab pretrain
|
||||||
prompt = data.get("prompt", "<ASR>")
|
prompt = data.get("prompt", "<ASR>")
|
||||||
source = data["source"].replace("/cpfs01", "/cpfs_speech/data")
|
source = data["source"].replace("/cpfs01", "/cpfs_speech/data") # only use in alibaba gpu group: .replace("/cpfs01", "/cpfs_speech/data")
|
||||||
target = data["target"]
|
target = data["target"]
|
||||||
source_len = data.get("source_len", 1)
|
source_len = data.get("source_len", 1)
|
||||||
target_len = data.get("target_len", 0)
|
target_len = data.get("target_len", 0)
|
||||||
|
if "aishell" in source:
|
||||||
|
target = target.replace(" ", "")
|
||||||
if source_len < self.min_source_length or source_len > self.max_source_length:
|
if source_len < self.min_source_length or source_len > self.max_source_length:
|
||||||
continue
|
continue
|
||||||
if target_len < self.min_target_length or target_len > self.max_target_length:
|
if target_len < self.min_target_length or target_len > self.max_target_length:
|
||||||
continue
|
continue
|
||||||
contents_i = {"source": source,
|
contents_i = {"source": source,
|
||||||
"prompt": prompt,
|
"prompt": prompt,
|
||||||
"target": target,
|
"target": target,
|
||||||
"source_len": source_len,
|
"source_len": source_len,
|
||||||
"target_len": target_len,
|
"target_len": target_len,
|
||||||
}
|
}
|
||||||
text_language = data.get("text_language", None)
|
text_language = data.get("text_language", None)
|
||||||
if text_language is not None:
|
if text_language is not None:
|
||||||
contents_i["text_language"] = text_language
|
contents_i["text_language"] = text_language
|
||||||
audio_language = data.get("audio_language", None)
|
# audio_language = data.get("audio_language", None)
|
||||||
if audio_language is not None:
|
# if audio_language is not None:
|
||||||
contents_i["audio_language"] = audio_language
|
# contents_i["audio_language"] = audio_language
|
||||||
contents.append(contents_i)
|
contents.append(contents_i)
|
||||||
|
|
||||||
self.contents = contents
|
self.contents = contents
|
||||||
|
|
||||||
logging.info(f"total_num: {len(self.contents)} of samplers in ranks: {rank}")
|
logging.info(
|
||||||
|
"total_num of samplers: {}, {}".format(len(self.contents), path))
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.contents)
|
return len(self.contents)
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
try:
|
|
||||||
data = self.contents[index]
|
data = self.contents[index]
|
||||||
except:
|
|
||||||
print(index)
|
|
||||||
return data
|
return data
|
||||||
|
|
||||||
def get_source_len(self, data_dict):
|
def get_source_len(self, data_dict):
|
||||||
@ -225,3 +186,96 @@ class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
|
|||||||
def get_target_len(self, data_dict):
|
def get_target_len(self, data_dict):
|
||||||
|
|
||||||
return data_dict.get("target_len", 0)
|
return data_dict.get("target_len", 0)
|
||||||
|
|
||||||
|
#
|
||||||
|
# @tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
|
||||||
|
# class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
|
||||||
|
#
|
||||||
|
# def __init__(self, path: str, **kwargs):
|
||||||
|
# super().__init__()
|
||||||
|
# logging.info("building IndexDS")
|
||||||
|
# self.max_source_length = kwargs.get("max_source_length", 2048)
|
||||||
|
# self.min_source_length = kwargs.get("min_source_length", 0)
|
||||||
|
# self.max_target_length = kwargs.get("max_target_length", 2048)
|
||||||
|
# self.min_target_length = kwargs.get("min_target_length", 0)
|
||||||
|
#
|
||||||
|
# data_split_num = kwargs.get("data_split_num", 1)
|
||||||
|
# data_split_i = kwargs.get("data_split_i", 0)
|
||||||
|
# if not kwargs.get("is_training", True):
|
||||||
|
# data_split_num = 1
|
||||||
|
# data_split_i = 0
|
||||||
|
# with open(path, encoding='utf-8') as fin:
|
||||||
|
# file_list_all = fin.readlines()
|
||||||
|
#
|
||||||
|
# num_per_slice = len(file_list_all) // data_split_num
|
||||||
|
# file_list = file_list_all[data_split_i * num_per_slice:(data_split_i + 1) * num_per_slice]
|
||||||
|
# logging.info(f"data_split_num: {data_split_num}, data_split_i: {data_split_i}, file_list: {file_list}, file_list_all: {file_list_all}")
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# total_num = len(file_list)
|
||||||
|
# try:
|
||||||
|
# rank = dist.get_rank()
|
||||||
|
# world_size = dist.get_world_size()
|
||||||
|
# except:
|
||||||
|
# rank = 0
|
||||||
|
# world_size = 1
|
||||||
|
# logging.info("distributed is not initialized, only single shard")
|
||||||
|
# num_per_rank = total_num // world_size
|
||||||
|
# if num_per_rank * world_size < total_num:
|
||||||
|
# logging.info(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
|
||||||
|
#
|
||||||
|
# file_list_rank = file_list[rank * num_per_rank:(rank + 1) * num_per_rank]
|
||||||
|
#
|
||||||
|
# contents = []
|
||||||
|
# for file_json in file_list_rank:
|
||||||
|
#
|
||||||
|
# with open(file_json.strip(), encoding='utf-8') as fin:
|
||||||
|
# for line in fin:
|
||||||
|
# data = json.loads(line.strip())
|
||||||
|
# if "text" in data: # for sft
|
||||||
|
# contents.append(data['text'])
|
||||||
|
# if "source" in data: # for speech lab pretrain
|
||||||
|
# prompt = data.get("prompt", "<ASR>")
|
||||||
|
# source = data["source"].replace("/cpfs01", "/cpfs_speech/data")
|
||||||
|
# target = data["target"]
|
||||||
|
# source_len = data.get("source_len", 1)
|
||||||
|
# target_len = data.get("target_len", 0)
|
||||||
|
#
|
||||||
|
# if source_len < self.min_source_length or source_len > self.max_source_length:
|
||||||
|
# continue
|
||||||
|
# if target_len < self.min_target_length or target_len > self.max_target_length:
|
||||||
|
# continue
|
||||||
|
# contents_i = {"source": source,
|
||||||
|
# "prompt": prompt,
|
||||||
|
# "target": target,
|
||||||
|
# "source_len": source_len,
|
||||||
|
# "target_len": target_len,
|
||||||
|
# }
|
||||||
|
# text_language = data.get("text_language", None)
|
||||||
|
# if text_language is not None:
|
||||||
|
# contents_i["text_language"] = text_language
|
||||||
|
# # audio_language = data.get("audio_language", None)
|
||||||
|
# # if audio_language is not None:
|
||||||
|
# # contents_i["audio_language"] = audio_language
|
||||||
|
# contents.append(contents_i)
|
||||||
|
#
|
||||||
|
# self.contents = contents
|
||||||
|
#
|
||||||
|
# logging.info(f"total_num: {len(self.contents)} of samplers in ranks: {rank}, file_list_rank: {file_list_rank}")
|
||||||
|
#
|
||||||
|
# def __len__(self):
|
||||||
|
# return len(self.contents)
|
||||||
|
#
|
||||||
|
# def __getitem__(self, index):
|
||||||
|
# try:
|
||||||
|
# data = self.contents[index]
|
||||||
|
# except:
|
||||||
|
# print(index)
|
||||||
|
# return data
|
||||||
|
#
|
||||||
|
# def get_source_len(self, data_dict):
|
||||||
|
# return data_dict.get("source_len", 1)
|
||||||
|
#
|
||||||
|
# def get_target_len(self, data_dict):
|
||||||
|
#
|
||||||
|
# return data_dict.get("target_len", 0)
|
||||||
|
|||||||
@ -301,6 +301,7 @@ class CustomDistributedBufferDynamicBatchSampler(DistributedSampler):
|
|||||||
batch_type="token",
|
batch_type="token",
|
||||||
num_replicas=None,
|
num_replicas=None,
|
||||||
rank=None,
|
rank=None,
|
||||||
|
rank_split=False,
|
||||||
shuffle=True,
|
shuffle=True,
|
||||||
drop_last=False,
|
drop_last=False,
|
||||||
is_training: bool = True,
|
is_training: bool = True,
|
||||||
@ -314,6 +315,12 @@ class CustomDistributedBufferDynamicBatchSampler(DistributedSampler):
|
|||||||
except:
|
except:
|
||||||
rank = 0
|
rank = 0
|
||||||
num_replicas = 1
|
num_replicas = 1
|
||||||
|
|
||||||
|
if rank_split:
|
||||||
|
logging.info(f"Warning, rank_split: {rank_split}, batch and shuffle data in local rank")
|
||||||
|
rank = 0
|
||||||
|
num_replicas = 1
|
||||||
|
|
||||||
self.rank = rank
|
self.rank = rank
|
||||||
self.num_replicas = num_replicas
|
self.num_replicas = num_replicas
|
||||||
self.dataset = dataset
|
self.dataset = dataset
|
||||||
|
|||||||
@ -40,7 +40,21 @@ class DataloaderMapStyle:
|
|||||||
self.dataset_val = dataset_val
|
self.dataset_val = dataset_val
|
||||||
self.kwargs = kwargs
|
self.kwargs = kwargs
|
||||||
|
|
||||||
def build_iter(self, epoch=0):
|
# split dataset
|
||||||
|
self.data_split_num = kwargs["dataset_conf"].get("data_split_num", 1)
|
||||||
|
self.dataset_class = dataset_class
|
||||||
|
self.frontend = frontend
|
||||||
|
self.tokenizer = tokenizer
|
||||||
|
self.kwargs = kwargs
|
||||||
|
|
||||||
|
def build_iter(self, epoch=0, data_split_i=0, **kwargs):
|
||||||
|
|
||||||
|
# reload dataset slice
|
||||||
|
if self.data_split_num > 1:
|
||||||
|
del self.dataset_tr
|
||||||
|
self.dataset_tr = self.dataset_class(self.kwargs.get("train_data_set_list"), frontend=self.frontend, tokenizer=self.tokenizer,
|
||||||
|
is_training=True, **self.kwargs.get("dataset_conf"), data_split_i=data_split_i)
|
||||||
|
|
||||||
# dataloader
|
# dataloader
|
||||||
batch_sampler = self.kwargs["dataset_conf"].get("batch_sampler", "BatchSampler")
|
batch_sampler = self.kwargs["dataset_conf"].get("batch_sampler", "BatchSampler")
|
||||||
batch_sampler_val = None
|
batch_sampler_val = None
|
||||||
|
|||||||
@ -245,29 +245,7 @@ class SenseVoiceDecoder(nn.Module):
|
|||||||
self.register_buffer("mask", mask, persistent=False)
|
self.register_buffer("mask", mask, persistent=False)
|
||||||
|
|
||||||
self.use_padmask = kwargs.get("use_padmask", True)
|
self.use_padmask = kwargs.get("use_padmask", True)
|
||||||
# def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
|
|
||||||
# """
|
|
||||||
# x : torch.LongTensor, shape = (batch_size, <= n_ctx)
|
|
||||||
# the text tokens
|
|
||||||
# xa : torch.Tensor, shape = (batch_size, n_audio_ctx, n_audio_state)
|
|
||||||
# the encoded audio features to be attended on
|
|
||||||
# """
|
|
||||||
# offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
|
|
||||||
# x = (
|
|
||||||
# self.token_embedding(x)
|
|
||||||
# + self.positional_embedding[offset: offset + x.shape[-1]]
|
|
||||||
# )
|
|
||||||
# x = x.to(xa.dtype)
|
|
||||||
#
|
|
||||||
# for block in self.blocks:
|
|
||||||
# x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
|
|
||||||
#
|
|
||||||
# x = self.ln(x)
|
|
||||||
# logits = (
|
|
||||||
# x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)
|
|
||||||
# ).float()
|
|
||||||
#
|
|
||||||
# return logits
|
|
||||||
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
|
|||||||
@ -252,6 +252,7 @@ class Trainer:
|
|||||||
dataloader_val=None,
|
dataloader_val=None,
|
||||||
epoch=None,
|
epoch=None,
|
||||||
writer=None,
|
writer=None,
|
||||||
|
**kwargs,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Defines the training process for a single epoch with gradient accumulation.
|
Defines the training process for a single epoch with gradient accumulation.
|
||||||
@ -374,6 +375,8 @@ class Trainer:
|
|||||||
stats=stats,
|
stats=stats,
|
||||||
writer=writer,
|
writer=writer,
|
||||||
tag="train",
|
tag="train",
|
||||||
|
data_split_i=kwargs.get("data_split_i", 0),
|
||||||
|
data_split_num=kwargs.get("data_split_num", 1),
|
||||||
)
|
)
|
||||||
|
|
||||||
if (batch_idx + 1) % self.validate_interval == 0:
|
if (batch_idx + 1) % self.validate_interval == 0:
|
||||||
@ -507,6 +510,9 @@ class Trainer:
|
|||||||
stats=None,
|
stats=None,
|
||||||
writer=None,
|
writer=None,
|
||||||
tag="train",
|
tag="train",
|
||||||
|
data_split_i=0,
|
||||||
|
data_split_num=1,
|
||||||
|
**kwargs,
|
||||||
):
|
):
|
||||||
|
|
||||||
if (batch_idx + 1) % self.log_interval == 0:
|
if (batch_idx + 1) % self.log_interval == 0:
|
||||||
@ -526,6 +532,7 @@ class Trainer:
|
|||||||
f"{tag}, "
|
f"{tag}, "
|
||||||
f"rank: {self.local_rank}, "
|
f"rank: {self.local_rank}, "
|
||||||
f"epoch: {epoch}/{self.max_epoch}, "
|
f"epoch: {epoch}/{self.max_epoch}, "
|
||||||
|
f"data_slice: {data_split_i}/{data_split_num}, "
|
||||||
f"step: {batch_idx + 1}/{batch_num_epoch}, total step: {self.batch_total}, "
|
f"step: {batch_idx + 1}/{batch_num_epoch}, total step: {self.batch_total}, "
|
||||||
f"(loss_avg_rank: {loss:.3f}), "
|
f"(loss_avg_rank: {loss:.3f}), "
|
||||||
f"(loss_avg_epoch: {loss_avg_epoch:.3f}), "
|
f"(loss_avg_epoch: {loss_avg_epoch:.3f}), "
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user