Dev gzf exp (#1647)

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* bugfix

* update with main (#1631)

* update seaco finetune

* v1.0.24

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* update with main (#1638)

* update seaco finetune

* v1.0.24

* update rwkv template

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
This commit is contained in:
zhifu gao 2024-04-23 18:08:57 +08:00 committed by GitHub
parent 0a4a1d5257
commit 2ac38adbe5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 194 additions and 135 deletions

View File

@ -176,15 +176,12 @@ def main(**kwargs):
except:
writer = None
# if use_ddp or use_fsdp:
# context = Join([model])
# else:
# context = nullcontext()
context = nullcontext()
for epoch in range(trainer.start_epoch, trainer.max_epoch + 1):
time1 = time.perf_counter()
with context:
dataloader_tr, dataloader_val = dataloader.build_iter(epoch)
for data_split_i in range(dataloader.data_split_num):
dataloader_tr, dataloader_val = dataloader.build_iter(epoch, data_split_i=data_split_i)
trainer.train_epoch(
model=model,
optim=optim,
@ -193,15 +190,17 @@ def main(**kwargs):
dataloader_train=dataloader_tr,
dataloader_val=dataloader_val,
epoch=epoch,
writer=writer
writer=writer,
data_split_i=data_split_i,
data_split_num=dataloader.data_split_num,
)
with context:
trainer.validate_epoch(
model=model,
dataloader_val=dataloader_val,
epoch=epoch,
writer=writer
)
trainer.validate_epoch(
model=model,
dataloader_val=dataloader_val,
epoch=epoch,
writer=writer
)
scheduler.step()

View File

@ -2,8 +2,9 @@ import os
import json
import torch
import logging
import concurrent.futures
import librosa
import random
import torch.distributed as dist
from funasr.register import tables
@ -44,7 +45,7 @@ from funasr.register import tables
# except:
# rank = 0
# world_size = 1
# logging.warning("distributed is not initialized, only single shard")
# logging.info("distributed is not initialized, only single shard")
# num_per_rank = total_num // world_size
#
# # rank = 0
@ -72,6 +73,7 @@ from funasr.register import tables
@tables.register("index_ds_classes", "IndexDSJsonl")
@tables.register("index_ds_classes", "IndexDSJsonlRankFull")
@tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
class IndexDSJsonlRankFull(torch.utils.data.Dataset):
def __init__(self, path: str, **kwargs):
@ -80,83 +82,27 @@ class IndexDSJsonlRankFull(torch.utils.data.Dataset):
self.min_source_length = kwargs.get("min_source_length", 0)
self.max_target_length = kwargs.get("max_target_length", 2048)
self.min_target_length = kwargs.get("min_target_length", 0)
if isinstance(path, (list, tuple)): # wav.scp, text.txt/text.trans
from funasr.datasets.audio_datasets.scp2jsonl import gen_jsonl_from_wav_text_list
jsonl_outdir = os.path.dirname(path[0])
jsonl_name = "datalist_train.jsonl" if kwargs.get("is_training", True) else "datalist_val.jsonl"
jsonl_file_out = os.path.join(jsonl_outdir, jsonl_name)
if not os.path.exists(jsonl_file_out):
print(f"datalist is: {path}, generate jsonl from it")
gen_jsonl_from_wav_text_list(path, jsonl_file_out=jsonl_file_out, **kwargs)
path = jsonl_file_out
contents = []
with open(path, encoding='utf-8') as fin:
for line in fin:
data = json.loads(line.strip())
if "text" in data: # for sft
contents.append(data['text'])
if "source" in data: # for speech lab pretrain
prompt = data.get("prompt", "<ASR>")
source = data["source"]
target = data["target"]
source_len = data.get("source_len", 1)
target_len = data.get("target_len", 0)
if "aishell" in source:
target = target.replace(" ", "")
if source_len < self.min_source_length or source_len > self.max_source_length:
continue
if target_len < self.min_target_length or target_len > self.max_target_length:
continue
contents_i = {"source": source,
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
text_language = data.get("text_language", None)
if text_language is not None:
contents_i["text_language"] = text_language
audio_language = data.get("audio_language", None)
if audio_language is not None:
contents_i["audio_language"] = audio_language
contents.append(contents_i)
self.contents = contents
is_training = kwargs.get("is_training", True)
if not (path.endswith(".jsonl") or path.endswith(".json")):
# jsonl list file
data_split_num = kwargs.get("data_split_num", 1)
data_split_i = kwargs.get("data_split_i", 0)
if not is_training:
data_split_num = 1
data_split_i = 0
with open(path, encoding='utf-8') as fin:
file_list_all = fin.readlines()
num_per_slice = len(file_list_all) // data_split_num
file_list = file_list_all[data_split_i * num_per_slice:(data_split_i + 1) * num_per_slice]
logging.info(
f"is_training: {is_training}, data_split_num: {data_split_num}, data_split_i: {data_split_i}, \nfile_list: {file_list}, \nfile_list_all: {file_list_all}")
logging.info(
"total_num of samplers across ranks: {}".format(len(self.contents)))
def __len__(self):
return len(self.contents)
def __getitem__(self, index):
try:
data = self.contents[index]
except:
print(index)
return data
def get_source_len(self, data_dict):
return data_dict.get("source_len", 1)
def get_target_len(self, data_dict):
return data_dict.get("target_len", 0)
@tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
def __init__(self, path: str, **kwargs):
super().__init__()
self.max_source_length = kwargs.get("max_source_length", 2048)
self.min_source_length = kwargs.get("min_source_length", 0)
self.max_target_length = kwargs.get("max_target_length", 2048)
self.min_target_length = kwargs.get("min_target_length", 0)
with open(path, encoding='utf-8') as fin:
file_list = fin.readlines()
else:
file_list = [path]
total_num = len(file_list)
try:
@ -165,16 +111,30 @@ class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
except:
rank = 0
world_size = 1
logging.warning("distributed is not initialized, only single shard")
logging.info("distributed is not initialized, only single shard")
if not kwargs.get("rank_split", False):
logging.info(f"Warning, rank_split disenabled, batch and shuffle data in global")
rank = 0
world_size = 1
num_per_rank = total_num // world_size
if num_per_rank * world_size < total_num:
logging.warning(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
logging.info(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
total_num_needed = num_per_rank * world_size
extra_num = total_num_needed - total_num
file_list_tmp = random.choices(file_list, k=extra_num)
file_list += file_list_tmp
logging.info(f"Warning, after random choices: {file_list}")
file_list_rank = file_list[rank * num_per_rank:(rank + 1) * num_per_rank]
logging.info(
f"is_training: {is_training}, file_list_rank: {file_list_rank}")
contents = []
for file_json in file_list_rank:
with open(file_json.strip(), encoding='utf-8') as fin:
for line in fin:
data = json.loads(line.strip())
@ -182,41 +142,42 @@ class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
contents.append(data['text'])
if "source" in data: # for speech lab pretrain
prompt = data.get("prompt", "<ASR>")
source = data["source"].replace("/cpfs01", "/cpfs_speech/data")
source = data["source"].replace("/cpfs01", "/cpfs_speech/data") # only use in alibaba gpu group: .replace("/cpfs01", "/cpfs_speech/data")
target = data["target"]
source_len = data.get("source_len", 1)
target_len = data.get("target_len", 0)
if "aishell" in source:
target = target.replace(" ", "")
if source_len < self.min_source_length or source_len > self.max_source_length:
continue
if target_len < self.min_target_length or target_len > self.max_target_length:
continue
contents_i = {"source": source,
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
text_language = data.get("text_language", None)
if text_language is not None:
contents_i["text_language"] = text_language
audio_language = data.get("audio_language", None)
if audio_language is not None:
contents_i["audio_language"] = audio_language
# audio_language = data.get("audio_language", None)
# if audio_language is not None:
# contents_i["audio_language"] = audio_language
contents.append(contents_i)
self.contents = contents
logging.info(f"total_num: {len(self.contents)} of samplers in ranks: {rank}")
logging.info(
"total_num of samplers: {}, {}".format(len(self.contents), path))
def __len__(self):
return len(self.contents)
def __getitem__(self, index):
try:
data = self.contents[index]
except:
print(index)
data = self.contents[index]
return data
def get_source_len(self, data_dict):
@ -225,3 +186,96 @@ class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
def get_target_len(self, data_dict):
return data_dict.get("target_len", 0)
#
# @tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
# class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
#
# def __init__(self, path: str, **kwargs):
# super().__init__()
# logging.info("building IndexDS")
# self.max_source_length = kwargs.get("max_source_length", 2048)
# self.min_source_length = kwargs.get("min_source_length", 0)
# self.max_target_length = kwargs.get("max_target_length", 2048)
# self.min_target_length = kwargs.get("min_target_length", 0)
#
# data_split_num = kwargs.get("data_split_num", 1)
# data_split_i = kwargs.get("data_split_i", 0)
# if not kwargs.get("is_training", True):
# data_split_num = 1
# data_split_i = 0
# with open(path, encoding='utf-8') as fin:
# file_list_all = fin.readlines()
#
# num_per_slice = len(file_list_all) // data_split_num
# file_list = file_list_all[data_split_i * num_per_slice:(data_split_i + 1) * num_per_slice]
# logging.info(f"data_split_num: {data_split_num}, data_split_i: {data_split_i}, file_list: {file_list}, file_list_all: {file_list_all}")
#
#
# total_num = len(file_list)
# try:
# rank = dist.get_rank()
# world_size = dist.get_world_size()
# except:
# rank = 0
# world_size = 1
# logging.info("distributed is not initialized, only single shard")
# num_per_rank = total_num // world_size
# if num_per_rank * world_size < total_num:
# logging.info(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
#
# file_list_rank = file_list[rank * num_per_rank:(rank + 1) * num_per_rank]
#
# contents = []
# for file_json in file_list_rank:
#
# with open(file_json.strip(), encoding='utf-8') as fin:
# for line in fin:
# data = json.loads(line.strip())
# if "text" in data: # for sft
# contents.append(data['text'])
# if "source" in data: # for speech lab pretrain
# prompt = data.get("prompt", "<ASR>")
# source = data["source"].replace("/cpfs01", "/cpfs_speech/data")
# target = data["target"]
# source_len = data.get("source_len", 1)
# target_len = data.get("target_len", 0)
#
# if source_len < self.min_source_length or source_len > self.max_source_length:
# continue
# if target_len < self.min_target_length or target_len > self.max_target_length:
# continue
# contents_i = {"source": source,
# "prompt": prompt,
# "target": target,
# "source_len": source_len,
# "target_len": target_len,
# }
# text_language = data.get("text_language", None)
# if text_language is not None:
# contents_i["text_language"] = text_language
# # audio_language = data.get("audio_language", None)
# # if audio_language is not None:
# # contents_i["audio_language"] = audio_language
# contents.append(contents_i)
#
# self.contents = contents
#
# logging.info(f"total_num: {len(self.contents)} of samplers in ranks: {rank}, file_list_rank: {file_list_rank}")
#
# def __len__(self):
# return len(self.contents)
#
# def __getitem__(self, index):
# try:
# data = self.contents[index]
# except:
# print(index)
# return data
#
# def get_source_len(self, data_dict):
# return data_dict.get("source_len", 1)
#
# def get_target_len(self, data_dict):
#
# return data_dict.get("target_len", 0)

View File

@ -301,6 +301,7 @@ class CustomDistributedBufferDynamicBatchSampler(DistributedSampler):
batch_type="token",
num_replicas=None,
rank=None,
rank_split=False,
shuffle=True,
drop_last=False,
is_training: bool = True,
@ -314,6 +315,12 @@ class CustomDistributedBufferDynamicBatchSampler(DistributedSampler):
except:
rank = 0
num_replicas = 1
if rank_split:
logging.info(f"Warning, rank_split: {rank_split}, batch and shuffle data in local rank")
rank = 0
num_replicas = 1
self.rank = rank
self.num_replicas = num_replicas
self.dataset = dataset

View File

@ -40,7 +40,21 @@ class DataloaderMapStyle:
self.dataset_val = dataset_val
self.kwargs = kwargs
def build_iter(self, epoch=0):
# split dataset
self.data_split_num = kwargs["dataset_conf"].get("data_split_num", 1)
self.dataset_class = dataset_class
self.frontend = frontend
self.tokenizer = tokenizer
self.kwargs = kwargs
def build_iter(self, epoch=0, data_split_i=0, **kwargs):
# reload dataset slice
if self.data_split_num > 1:
del self.dataset_tr
self.dataset_tr = self.dataset_class(self.kwargs.get("train_data_set_list"), frontend=self.frontend, tokenizer=self.tokenizer,
is_training=True, **self.kwargs.get("dataset_conf"), data_split_i=data_split_i)
# dataloader
batch_sampler = self.kwargs["dataset_conf"].get("batch_sampler", "BatchSampler")
batch_sampler_val = None

View File

@ -245,29 +245,7 @@ class SenseVoiceDecoder(nn.Module):
self.register_buffer("mask", mask, persistent=False)
self.use_padmask = kwargs.get("use_padmask", True)
# def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
# """
# x : torch.LongTensor, shape = (batch_size, <= n_ctx)
# the text tokens
# xa : torch.Tensor, shape = (batch_size, n_audio_ctx, n_audio_state)
# the encoded audio features to be attended on
# """
# offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
# x = (
# self.token_embedding(x)
# + self.positional_embedding[offset: offset + x.shape[-1]]
# )
# x = x.to(xa.dtype)
#
# for block in self.blocks:
# x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
#
# x = self.ln(x)
# logits = (
# x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)
# ).float()
#
# return logits
def forward(

View File

@ -252,6 +252,7 @@ class Trainer:
dataloader_val=None,
epoch=None,
writer=None,
**kwargs,
):
"""
Defines the training process for a single epoch with gradient accumulation.
@ -374,6 +375,8 @@ class Trainer:
stats=stats,
writer=writer,
tag="train",
data_split_i=kwargs.get("data_split_i", 0),
data_split_num=kwargs.get("data_split_num", 1),
)
if (batch_idx + 1) % self.validate_interval == 0:
@ -507,6 +510,9 @@ class Trainer:
stats=None,
writer=None,
tag="train",
data_split_i=0,
data_split_num=1,
**kwargs,
):
if (batch_idx + 1) % self.log_interval == 0:
@ -526,6 +532,7 @@ class Trainer:
f"{tag}, "
f"rank: {self.local_rank}, "
f"epoch: {epoch}/{self.max_epoch}, "
f"data_slice: {data_split_i}/{data_split_num}, "
f"step: {batch_idx + 1}/{batch_num_epoch}, total step: {self.batch_total}, "
f"(loss_avg_rank: {loss:.3f}), "
f"(loss_avg_epoch: {loss_avg_epoch:.3f}), "