mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
readme docs
This commit is contained in:
parent
8caf6b086c
commit
2a31a37b7a
@ -20,6 +20,12 @@ Overview
|
||||
./installation/installation.md
|
||||
./installation/docker.md
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Quick Start
|
||||
|
||||
./qick_start.md
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Academic Egs
|
||||
|
||||
80
docs/qick_start.md
Normal file
80
docs/qick_start.md
Normal file
@ -0,0 +1,80 @@
|
||||
|
||||
# Quick Start
|
||||
|
||||
You can use FunASR in the following ways:
|
||||
|
||||
- Service Deployment SDK
|
||||
- Industrial model egs
|
||||
- Academic model egs
|
||||
|
||||
## Service Deployment SDK
|
||||
|
||||
### Python version Example
|
||||
Supports real-time streaming speech recognition, uses non-streaming models for error correction, and outputs text with punctuation. Currently, only single client is supported. For multi-concurrency, please refer to the C++ version service deployment SDK below.
|
||||
|
||||
#### Server Deployment
|
||||
|
||||
```shell
|
||||
cd funasr/runtime/python/websocket
|
||||
python funasr_wss_server.py --port 10095
|
||||
```
|
||||
|
||||
#### Client Testing
|
||||
|
||||
```shell
|
||||
python funasr_wss_client.py --host "127.0.0.1" --port 10095 --mode 2pass --chunk_size "5,10,5"
|
||||
```
|
||||
|
||||
For more examples, please refer to [docs](https://alibaba-damo-academy.github.io/FunASR/en/runtime/websocket_python.html#id2).
|
||||
|
||||
### C++ version Example
|
||||
|
||||
Currently, offline file transcription service (CPU) is supported, and concurrent requests of hundreds of channels are supported.
|
||||
|
||||
#### Server Deployment
|
||||
|
||||
You can use the following command to complete the deployment with one click:
|
||||
|
||||
```shell
|
||||
curl -O https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/shell/funasr-runtime-deploy-offline-cpu-zh.sh
|
||||
sudo bash funasr-runtime-deploy-offline-cpu-zh.sh install --workspace ./funasr-runtime-resources
|
||||
```
|
||||
|
||||
#### Client Testing
|
||||
|
||||
```shell
|
||||
python3 funasr_wss_client.py --host "127.0.0.1" --port 10095 --mode offline --audio_in "../audio/asr_example.wav"
|
||||
```
|
||||
|
||||
For more examples, please refer to [docs](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/docs/SDK_tutorial_zh.md)
|
||||
|
||||
|
||||
## Industrial Model Egs
|
||||
|
||||
If you want to use the pre-trained industrial models in ModelScope for inference or fine-tuning training, you can refer to the following command:
|
||||
|
||||
```python
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
||||
)
|
||||
|
||||
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
|
||||
print(rec_result)
|
||||
# {'text': '欢迎大家来体验达摩院推出的语音识别模型'}
|
||||
```
|
||||
|
||||
More examples could be found in [docs](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_pipeline/quick_start.html)
|
||||
|
||||
## Academic model egs
|
||||
|
||||
If you want to train from scratch, usually for academic models, you can start training and inference with the following command:
|
||||
|
||||
```shell
|
||||
cd egs/aishell/paraformer
|
||||
. ./run.sh --CUDA_VISIBLE_DEVICES="0,1" --gpu_num=2
|
||||
```
|
||||
More examples could be found in [docs](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_pipeline/quick_start.html)
|
||||
Loading…
Reference in New Issue
Block a user