mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Bug fix for res combine
This commit is contained in:
parent
ca1f8ee423
commit
292d34f236
@ -15,6 +15,8 @@ model = AutoModel(model="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-com
|
|||||||
# spk_model_revision="v2.0.2",
|
# spk_model_revision="v2.0.2",
|
||||||
)
|
)
|
||||||
|
|
||||||
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
res = model.generate(input="/Users/shixian/Downloads/output_16000.wav",
|
||||||
hotword='达摩院 魔搭')
|
hotword='达摩院 魔搭',
|
||||||
|
# sentence_timestamp=True,
|
||||||
|
)
|
||||||
print(res)
|
print(res)
|
||||||
@ -123,7 +123,6 @@ class AutoModel:
|
|||||||
self.preset_spk_num = kwargs.get("preset_spk_num", None)
|
self.preset_spk_num = kwargs.get("preset_spk_num", None)
|
||||||
if self.preset_spk_num:
|
if self.preset_spk_num:
|
||||||
logging.warning("Using preset speaker number: {}".format(self.preset_spk_num))
|
logging.warning("Using preset speaker number: {}".format(self.preset_spk_num))
|
||||||
logging.warning("Many to print when using speaker model...")
|
|
||||||
|
|
||||||
self.kwargs = kwargs
|
self.kwargs = kwargs
|
||||||
self.model = model
|
self.model = model
|
||||||
@ -329,8 +328,6 @@ class AutoModel:
|
|||||||
speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx])
|
speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx])
|
||||||
results = self.inference(speech_j, input_len=None, model=model, kwargs=kwargs, disable_pbar=True, **cfg)
|
results = self.inference(speech_j, input_len=None, model=model, kwargs=kwargs, disable_pbar=True, **cfg)
|
||||||
if self.spk_model is not None:
|
if self.spk_model is not None:
|
||||||
|
|
||||||
|
|
||||||
# compose vad segments: [[start_time_sec, end_time_sec, speech], [...]]
|
# compose vad segments: [[start_time_sec, end_time_sec, speech], [...]]
|
||||||
for _b in range(len(speech_j)):
|
for _b in range(len(speech_j)):
|
||||||
vad_segments = [[sorted_data[beg_idx:end_idx][_b][0][0]/1000.0,
|
vad_segments = [[sorted_data[beg_idx:end_idx][_b][0][0]/1000.0,
|
||||||
@ -345,8 +342,6 @@ class AutoModel:
|
|||||||
if len(results) < 1:
|
if len(results) < 1:
|
||||||
continue
|
continue
|
||||||
results_sorted.extend(results)
|
results_sorted.extend(results)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
end_asr_total = time.time()
|
end_asr_total = time.time()
|
||||||
time_escape_total_per_sample = end_asr_total - beg_asr_total
|
time_escape_total_per_sample = end_asr_total - beg_asr_total
|
||||||
@ -355,7 +350,6 @@ class AutoModel:
|
|||||||
f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, "
|
f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, "
|
||||||
f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}")
|
f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}")
|
||||||
|
|
||||||
|
|
||||||
restored_data = [0] * n
|
restored_data = [0] * n
|
||||||
for j in range(n):
|
for j in range(n):
|
||||||
index = sorted_data[j][1]
|
index = sorted_data[j][1]
|
||||||
@ -378,7 +372,7 @@ class AutoModel:
|
|||||||
result[k] = restored_data[j][k]
|
result[k] = restored_data[j][k]
|
||||||
else:
|
else:
|
||||||
result[k] = torch.cat([result[k], restored_data[j][k]], dim=0)
|
result[k] = torch.cat([result[k], restored_data[j][k]], dim=0)
|
||||||
elif k == 'raw_text':
|
elif 'text' in k:
|
||||||
if k not in result:
|
if k not in result:
|
||||||
result[k] = restored_data[j][k]
|
result[k] = restored_data[j][k]
|
||||||
else:
|
else:
|
||||||
@ -393,8 +387,9 @@ class AutoModel:
|
|||||||
if self.punc_model is not None:
|
if self.punc_model is not None:
|
||||||
self.punc_kwargs.update(cfg)
|
self.punc_kwargs.update(cfg)
|
||||||
punc_res = self.inference(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg)
|
punc_res = self.inference(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg)
|
||||||
|
import copy; raw_text = copy.copy(result["text"])
|
||||||
result["text"] = punc_res[0]["text"]
|
result["text"] = punc_res[0]["text"]
|
||||||
|
|
||||||
# speaker embedding cluster after resorted
|
# speaker embedding cluster after resorted
|
||||||
if self.spk_model is not None:
|
if self.spk_model is not None:
|
||||||
all_segments = sorted(all_segments, key=lambda x: x[0])
|
all_segments = sorted(all_segments, key=lambda x: x[0])
|
||||||
@ -402,19 +397,24 @@ class AutoModel:
|
|||||||
labels = self.cb_model(spk_embedding.cpu(), oracle_num=self.preset_spk_num)
|
labels = self.cb_model(spk_embedding.cpu(), oracle_num=self.preset_spk_num)
|
||||||
del result['spk_embedding']
|
del result['spk_embedding']
|
||||||
sv_output = postprocess(all_segments, None, labels, spk_embedding.cpu())
|
sv_output = postprocess(all_segments, None, labels, spk_embedding.cpu())
|
||||||
if self.spk_mode == 'vad_segment':
|
if self.spk_mode == 'vad_segment': # recover sentence_list
|
||||||
sentence_list = []
|
sentence_list = []
|
||||||
for res, vadsegment in zip(restored_data, vadsegments):
|
for res, vadsegment in zip(restored_data, vadsegments):
|
||||||
sentence_list.append({"start": vadsegment[0],\
|
sentence_list.append({"start": vadsegment[0],\
|
||||||
"end": vadsegment[1],
|
"end": vadsegment[1],
|
||||||
"sentence": res['raw_text'],
|
"sentence": res['raw_text'],
|
||||||
"timestamp": res['timestamp']})
|
"timestamp": res['timestamp']})
|
||||||
else: # punc_segment
|
elif self.spk_mode == 'punc_segment':
|
||||||
sentence_list = timestamp_sentence(punc_res[0]['punc_array'], \
|
sentence_list = timestamp_sentence(punc_res[0]['punc_array'], \
|
||||||
result['timestamp'], \
|
result['timestamp'], \
|
||||||
result['raw_text'])
|
result['raw_text'])
|
||||||
distribute_spk(sentence_list, sv_output)
|
distribute_spk(sentence_list, sv_output)
|
||||||
result['sentence_info'] = sentence_list
|
result['sentence_info'] = sentence_list
|
||||||
|
elif kwargs.get("sentence_timestamp", False):
|
||||||
|
sentence_list = timestamp_sentence(punc_res[0]['punc_array'], \
|
||||||
|
result['timestamp'], \
|
||||||
|
result['raw_text'])
|
||||||
|
result['sentence_info'] = sentence_list
|
||||||
|
|
||||||
result["key"] = key
|
result["key"] = key
|
||||||
results_ret_list.append(result)
|
results_ret_list.append(result)
|
||||||
|
|||||||
@ -65,11 +65,9 @@ class ContextualParaformer(Paraformer):
|
|||||||
|
|
||||||
|
|
||||||
if bias_encoder_type == 'lstm':
|
if bias_encoder_type == 'lstm':
|
||||||
logging.warning("enable bias encoder sampling and contextual training")
|
|
||||||
self.bias_encoder = torch.nn.LSTM(inner_dim, inner_dim, 1, batch_first=True, dropout=bias_encoder_dropout_rate)
|
self.bias_encoder = torch.nn.LSTM(inner_dim, inner_dim, 1, batch_first=True, dropout=bias_encoder_dropout_rate)
|
||||||
self.bias_embed = torch.nn.Embedding(self.vocab_size, inner_dim)
|
self.bias_embed = torch.nn.Embedding(self.vocab_size, inner_dim)
|
||||||
elif bias_encoder_type == 'mean':
|
elif bias_encoder_type == 'mean':
|
||||||
logging.warning("enable bias encoder sampling and contextual training")
|
|
||||||
self.bias_embed = torch.nn.Embedding(self.vocab_size, inner_dim)
|
self.bias_embed = torch.nn.Embedding(self.vocab_size, inner_dim)
|
||||||
else:
|
else:
|
||||||
logging.error("Unsupport bias encoder type: {}".format(bias_encoder_type))
|
logging.error("Unsupport bias encoder type: {}".format(bias_encoder_type))
|
||||||
|
|||||||
@ -66,7 +66,6 @@ class SeacoParaformer(BiCifParaformer, Paraformer):
|
|||||||
|
|
||||||
# bias encoder
|
# bias encoder
|
||||||
if self.bias_encoder_type == 'lstm':
|
if self.bias_encoder_type == 'lstm':
|
||||||
logging.warning("enable bias encoder sampling and contextual training")
|
|
||||||
self.bias_encoder = torch.nn.LSTM(self.inner_dim,
|
self.bias_encoder = torch.nn.LSTM(self.inner_dim,
|
||||||
self.inner_dim,
|
self.inner_dim,
|
||||||
2,
|
2,
|
||||||
@ -79,7 +78,6 @@ class SeacoParaformer(BiCifParaformer, Paraformer):
|
|||||||
self.lstm_proj = None
|
self.lstm_proj = None
|
||||||
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
|
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
|
||||||
elif self.bias_encoder_type == 'mean':
|
elif self.bias_encoder_type == 'mean':
|
||||||
logging.warning("enable bias encoder sampling and contextual training")
|
|
||||||
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
|
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
|
||||||
else:
|
else:
|
||||||
logging.error("Unsupport bias encoder type: {}".format(self.bias_encoder_type))
|
logging.error("Unsupport bias encoder type: {}".format(self.bias_encoder_type))
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user