mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update repo
This commit is contained in:
parent
ca666ab7d8
commit
27fddb4982
@ -50,7 +50,8 @@ class Speech2Xvector:
|
||||
model_file=sv_model_file,
|
||||
cmvn_file=None,
|
||||
device=device,
|
||||
task_name="sv"
|
||||
task_name="sv",
|
||||
mode="sv",
|
||||
)
|
||||
logging.info("sv_model: {}".format(sv_model))
|
||||
logging.info("model parameter number: {}".format(statistic_model_parameters(sv_model)))
|
||||
|
||||
@ -81,6 +81,17 @@ def build_args(args, parser, extra_task_params):
|
||||
for class_choices in class_choices_list:
|
||||
class_choices.add_arguments(task_parser)
|
||||
|
||||
elif args.task_name == "sv":
|
||||
from funasr.build_utils.build_sv_model import class_choices_list
|
||||
for class_choices in class_choices_list:
|
||||
class_choices.add_arguments(task_parser)
|
||||
task_parser.add_argument(
|
||||
"--input_size",
|
||||
type=int_or_none,
|
||||
default=None,
|
||||
help="The number of input dimension of the feature",
|
||||
)
|
||||
|
||||
else:
|
||||
raise NotImplementedError("Not supported task: {}".format(args.task_name))
|
||||
|
||||
|
||||
@ -1,9 +1,10 @@
|
||||
from funasr.build_utils.build_asr_model import build_asr_model
|
||||
from funasr.build_utils.build_diar_model import build_diar_model
|
||||
from funasr.build_utils.build_lm_model import build_lm_model
|
||||
from funasr.build_utils.build_pretrain_model import build_pretrain_model
|
||||
from funasr.build_utils.build_punc_model import build_punc_model
|
||||
from funasr.build_utils.build_sv_model import build_sv_model
|
||||
from funasr.build_utils.build_vad_model import build_vad_model
|
||||
from funasr.build_utils.build_diar_model import build_diar_model
|
||||
|
||||
|
||||
def build_model(args):
|
||||
@ -19,6 +20,8 @@ def build_model(args):
|
||||
model = build_vad_model(args)
|
||||
elif args.task_name == "diar":
|
||||
model = build_diar_model(args)
|
||||
elif args.task_name == "sv":
|
||||
model = build_sv_model(args)
|
||||
else:
|
||||
raise NotImplementedError("Not supported task: {}".format(args.task_name))
|
||||
|
||||
|
||||
@ -87,7 +87,7 @@ def convert_tf2torch(
|
||||
ckpt,
|
||||
mode,
|
||||
):
|
||||
assert mode == "paraformer" or mode == "uniasr" or mode == "sond"
|
||||
assert mode == "paraformer" or mode == "uniasr" or mode == "sond" or mode == "sv"
|
||||
logging.info("start convert tf model to torch model")
|
||||
from funasr.modules.streaming_utils.load_fr_tf import load_tf_dict
|
||||
var_dict_tf = load_tf_dict(ckpt)
|
||||
@ -128,7 +128,7 @@ def convert_tf2torch(
|
||||
# bias_encoder
|
||||
var_dict_torch_update_local = model.clas_convert_tf2torch(var_dict_tf, var_dict_torch)
|
||||
var_dict_torch_update.update(var_dict_torch_update_local)
|
||||
else:
|
||||
elif "mode" == "sond":
|
||||
if model.encoder is not None:
|
||||
var_dict_torch_update_local = model.encoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
||||
var_dict_torch_update.update(var_dict_torch_update_local)
|
||||
@ -148,9 +148,22 @@ def convert_tf2torch(
|
||||
if model.decoder is not None:
|
||||
var_dict_torch_update_local = model.decoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
||||
var_dict_torch_update.update(var_dict_torch_update_local)
|
||||
else:
|
||||
# speech encoder
|
||||
var_dict_torch_update_local = model.encoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
||||
var_dict_torch_update.update(var_dict_torch_update_local)
|
||||
# pooling layer
|
||||
var_dict_torch_update_local = model.pooling_layer.convert_tf2torch(var_dict_tf, var_dict_torch)
|
||||
var_dict_torch_update.update(var_dict_torch_update_local)
|
||||
# decoder
|
||||
var_dict_torch_update_local = model.decoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
||||
var_dict_torch_update.update(var_dict_torch_update_local)
|
||||
|
||||
return var_dict_torch_update
|
||||
|
||||
return var_dict_torch_update
|
||||
|
||||
|
||||
def fileter_model_dict(src_dict: dict, dest_dict: dict):
|
||||
from collections import OrderedDict
|
||||
new_dict = OrderedDict()
|
||||
@ -162,4 +175,4 @@ def fileter_model_dict(src_dict: dict, dest_dict: dict):
|
||||
for key, value in dest_dict.items():
|
||||
if key not in new_dict:
|
||||
logging.warning("{} is missed in checkpoint.".format(key))
|
||||
return new_dict
|
||||
return new_dict
|
||||
|
||||
258
funasr/build_utils/build_sv_model.py
Normal file
258
funasr/build_utils/build_sv_model.py
Normal file
@ -0,0 +1,258 @@
|
||||
import logging
|
||||
|
||||
import torch
|
||||
from typeguard import check_return_type
|
||||
|
||||
from funasr.layers.abs_normalize import AbsNormalize
|
||||
from funasr.layers.global_mvn import GlobalMVN
|
||||
from funasr.layers.utterance_mvn import UtteranceMVN
|
||||
from funasr.models.base_model import FunASRModel
|
||||
from funasr.models.decoder.abs_decoder import AbsDecoder
|
||||
from funasr.models.decoder.sv_decoder import DenseDecoder
|
||||
from funasr.models.e2e_sv import ESPnetSVModel
|
||||
from funasr.models.encoder.abs_encoder import AbsEncoder
|
||||
from funasr.models.encoder.resnet34_encoder import ResNet34, ResNet34_SP_L2Reg
|
||||
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
||||
from funasr.models.frontend.abs_frontend import AbsFrontend
|
||||
from funasr.models.frontend.default import DefaultFrontend
|
||||
from funasr.models.frontend.fused import FusedFrontends
|
||||
from funasr.models.frontend.s3prl import S3prlFrontend
|
||||
from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr.models.frontend.windowing import SlidingWindow
|
||||
from funasr.models.pooling.statistic_pooling import StatisticPooling
|
||||
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
|
||||
from funasr.models.postencoder.hugging_face_transformers_postencoder import (
|
||||
HuggingFaceTransformersPostEncoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
|
||||
from funasr.models.preencoder.linear import LinearProjection
|
||||
from funasr.models.preencoder.sinc import LightweightSincConvs
|
||||
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
||||
from funasr.models.specaug.specaug import SpecAug
|
||||
from funasr.torch_utils.initialize import initialize
|
||||
from funasr.train.class_choices import ClassChoices
|
||||
|
||||
frontend_choices = ClassChoices(
|
||||
name="frontend",
|
||||
classes=dict(
|
||||
default=DefaultFrontend,
|
||||
sliding_window=SlidingWindow,
|
||||
s3prl=S3prlFrontend,
|
||||
fused=FusedFrontends,
|
||||
wav_frontend=WavFrontend,
|
||||
),
|
||||
type_check=AbsFrontend,
|
||||
default="default",
|
||||
)
|
||||
specaug_choices = ClassChoices(
|
||||
name="specaug",
|
||||
classes=dict(
|
||||
specaug=SpecAug,
|
||||
),
|
||||
type_check=AbsSpecAug,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
normalize_choices = ClassChoices(
|
||||
"normalize",
|
||||
classes=dict(
|
||||
global_mvn=GlobalMVN,
|
||||
utterance_mvn=UtteranceMVN,
|
||||
),
|
||||
type_check=AbsNormalize,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
model_choices = ClassChoices(
|
||||
"model",
|
||||
classes=dict(
|
||||
espnet=ESPnetSVModel,
|
||||
),
|
||||
type_check=FunASRModel,
|
||||
default="espnet",
|
||||
)
|
||||
preencoder_choices = ClassChoices(
|
||||
name="preencoder",
|
||||
classes=dict(
|
||||
sinc=LightweightSincConvs,
|
||||
linear=LinearProjection,
|
||||
),
|
||||
type_check=AbsPreEncoder,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
encoder_choices = ClassChoices(
|
||||
"encoder",
|
||||
classes=dict(
|
||||
resnet34=ResNet34,
|
||||
resnet34_sp_l2reg=ResNet34_SP_L2Reg,
|
||||
rnn=RNNEncoder,
|
||||
),
|
||||
type_check=AbsEncoder,
|
||||
default="resnet34",
|
||||
)
|
||||
postencoder_choices = ClassChoices(
|
||||
name="postencoder",
|
||||
classes=dict(
|
||||
hugging_face_transformers=HuggingFaceTransformersPostEncoder,
|
||||
),
|
||||
type_check=AbsPostEncoder,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
pooling_choices = ClassChoices(
|
||||
name="pooling_type",
|
||||
classes=dict(
|
||||
statistic=StatisticPooling,
|
||||
),
|
||||
type_check=torch.nn.Module,
|
||||
default="statistic",
|
||||
)
|
||||
decoder_choices = ClassChoices(
|
||||
"decoder",
|
||||
classes=dict(
|
||||
dense=DenseDecoder,
|
||||
),
|
||||
type_check=AbsDecoder,
|
||||
default="dense",
|
||||
)
|
||||
|
||||
class_choices_list = [
|
||||
# --frontend and --frontend_conf
|
||||
frontend_choices,
|
||||
# --specaug and --specaug_conf
|
||||
specaug_choices,
|
||||
# --normalize and --normalize_conf
|
||||
normalize_choices,
|
||||
# --model and --model_conf
|
||||
model_choices,
|
||||
# --preencoder and --preencoder_conf
|
||||
preencoder_choices,
|
||||
# --encoder and --encoder_conf
|
||||
encoder_choices,
|
||||
# --postencoder and --postencoder_conf
|
||||
postencoder_choices,
|
||||
# --pooling and --pooling_conf
|
||||
pooling_choices,
|
||||
# --decoder and --decoder_conf
|
||||
decoder_choices,
|
||||
]
|
||||
|
||||
|
||||
def build_sv_model(args):
|
||||
# token_list
|
||||
if isinstance(args.token_list, str):
|
||||
with open(args.token_list, encoding="utf-8") as f:
|
||||
token_list = [line.rstrip() for line in f]
|
||||
|
||||
# Overwriting token_list to keep it as "portable".
|
||||
args.token_list = list(token_list)
|
||||
elif isinstance(args.token_list, (tuple, list)):
|
||||
token_list = list(args.token_list)
|
||||
else:
|
||||
raise RuntimeError("token_list must be str or list")
|
||||
vocab_size = len(token_list)
|
||||
logging.info(f"Speaker number: {vocab_size}")
|
||||
|
||||
# 1. frontend
|
||||
if args.input_size is None:
|
||||
# Extract features in the model
|
||||
frontend_class = frontend_choices.get_class(args.frontend)
|
||||
frontend = frontend_class(**args.frontend_conf)
|
||||
input_size = frontend.output_size()
|
||||
else:
|
||||
# Give features from data-loader
|
||||
args.frontend = None
|
||||
args.frontend_conf = {}
|
||||
frontend = None
|
||||
input_size = args.input_size
|
||||
|
||||
# 2. Data augmentation for spectrogram
|
||||
if args.specaug is not None:
|
||||
specaug_class = specaug_choices.get_class(args.specaug)
|
||||
specaug = specaug_class(**args.specaug_conf)
|
||||
else:
|
||||
specaug = None
|
||||
|
||||
# 3. Normalization layer
|
||||
if args.normalize is not None:
|
||||
normalize_class = normalize_choices.get_class(args.normalize)
|
||||
normalize = normalize_class(**args.normalize_conf)
|
||||
else:
|
||||
normalize = None
|
||||
|
||||
# 4. Pre-encoder input block
|
||||
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
||||
if getattr(args, "preencoder", None) is not None:
|
||||
preencoder_class = preencoder_choices.get_class(args.preencoder)
|
||||
preencoder = preencoder_class(**args.preencoder_conf)
|
||||
input_size = preencoder.output_size()
|
||||
else:
|
||||
preencoder = None
|
||||
|
||||
# 5. Encoder
|
||||
encoder_class = encoder_choices.get_class(args.encoder)
|
||||
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
||||
|
||||
# 6. Post-encoder block
|
||||
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
||||
encoder_output_size = encoder.output_size()
|
||||
if getattr(args, "postencoder", None) is not None:
|
||||
postencoder_class = postencoder_choices.get_class(args.postencoder)
|
||||
postencoder = postencoder_class(
|
||||
input_size=encoder_output_size, **args.postencoder_conf
|
||||
)
|
||||
encoder_output_size = postencoder.output_size()
|
||||
else:
|
||||
postencoder = None
|
||||
|
||||
# 7. Pooling layer
|
||||
pooling_class = pooling_choices.get_class(args.pooling_type)
|
||||
pooling_dim = (2, 3)
|
||||
eps = 1e-12
|
||||
if hasattr(args, "pooling_type_conf"):
|
||||
if "pooling_dim" in args.pooling_type_conf:
|
||||
pooling_dim = args.pooling_type_conf["pooling_dim"]
|
||||
if "eps" in args.pooling_type_conf:
|
||||
eps = args.pooling_type_conf["eps"]
|
||||
pooling_layer = pooling_class(
|
||||
pooling_dim=pooling_dim,
|
||||
eps=eps,
|
||||
)
|
||||
if args.pooling_type == "statistic":
|
||||
encoder_output_size *= 2
|
||||
|
||||
# 8. Decoder
|
||||
decoder_class = decoder_choices.get_class(args.decoder)
|
||||
decoder = decoder_class(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
**args.decoder_conf,
|
||||
)
|
||||
|
||||
# 7. Build model
|
||||
try:
|
||||
model_class = model_choices.get_class(args.model)
|
||||
except AttributeError:
|
||||
model_class = model_choices.get_class("espnet")
|
||||
model = model_class(
|
||||
vocab_size=vocab_size,
|
||||
token_list=token_list,
|
||||
frontend=frontend,
|
||||
specaug=specaug,
|
||||
normalize=normalize,
|
||||
preencoder=preencoder,
|
||||
encoder=encoder,
|
||||
postencoder=postencoder,
|
||||
pooling_layer=pooling_layer,
|
||||
decoder=decoder,
|
||||
**args.model_conf,
|
||||
)
|
||||
|
||||
# FIXME(kamo): Should be done in model?
|
||||
# 8. Initialize
|
||||
if args.init is not None:
|
||||
initialize(model, args.init)
|
||||
|
||||
assert check_return_type(model)
|
||||
return model
|
||||
Loading…
Reference in New Issue
Block a user