Merge pull request #84 from alibaba-damo-academy/dev_lhn

add minnan uniasr model recipe
This commit is contained in:
hnluo 2023-02-09 15:39:27 +08:00 committed by GitHub
commit 235ecbc9b7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 232 additions and 0 deletions

View File

@ -0,0 +1,53 @@
# ModelScope Model
## How to finetune and infer using a pretrained Paraformer-large Model
### Finetune
- Modify finetune training related parameters in `finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include files: `train/wav.scp`, `train/text`; `validation/wav.scp`, `validation/text`
- <strong>dataset_type:</strong> # for dataset larger than 1000 hours, set as `large`, otherwise set as `small`
- <strong>batch_bins:</strong> # batch size. For dataset_type is `small`, `batch_bins` indicates the feature frames. For dataset_type is `large`, `batch_bins` indicates the duration in ms
- <strong>max_epoch:</strong> # number of training epoch
- <strong>lr:</strong> # learning rate
- Then you can run the pipeline to finetune with:
```python
python finetune.py
```
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.py`
- <strong>data_dir:</strong> # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
- <strong>output_dir:</strong> # result dir
- <strong>ngpu:</strong> # the number of GPUs for decoding
- <strong>njob:</strong> # the number of jobs for each GPU
- Then you can run the pipeline to infer with:
```python
python infer.py
```
- Results
The decoding results can be found in `$output_dir/1best_recog/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.
### Inference using local finetuned model
- Modify inference related parameters in `infer_after_finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
- <strong>decoding_model_name:</strong> # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave.pth`
- Then you can run the pipeline to finetune with:
```python
python infer_after_finetune.py
```
- Results
The decoding results can be found in `$output_dir/decoding_results/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.

View File

@ -0,0 +1,36 @@
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from funasr.datasets.ms_dataset import MsDataset
from funasr.utils.modelscope_param import modelscope_args
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = MsDataset.load(params.data_path)
kwargs = dict(
model=params.model,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
params = modelscope_args(model="damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825", data_path="./data")
params.output_dir = "./checkpoint" # m模型保存路径
params.data_path = "./example_data/" # 数据路径
params.dataset_type = "small" # 小数据量设置small若数据量大于1000小时请使用large
params.batch_bins = 2000 # batch size如果dataset_type="small"batch_bins单位为fbank特征帧数如果dataset_type="large"batch_bins单位为毫秒
params.max_epoch = 20 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
modelscope_finetune(params)

View File

@ -0,0 +1,89 @@
import os
import shutil
from multiprocessing import Pool
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from funasr.utils.compute_wer import compute_wer
def modelscope_infer_core(output_dir, split_dir, njob, idx):
output_dir_job = os.path.join(output_dir, "output.{}".format(idx))
gpu_id = (int(idx) - 1) // njob
if "CUDA_VISIBLE_DEVICES" in os.environ.keys():
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'].split(",")
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
else:
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825",
output_dir=output_dir_job,
batch_size=1
)
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
inference_pipline(audio_in=audio_in)
def modelscope_infer(params):
# prepare for multi-GPU decoding
ngpu = params["ngpu"]
njob = params["njob"]
output_dir = params["output_dir"]
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.mkdir(output_dir)
split_dir = os.path.join(output_dir, "split")
os.mkdir(split_dir)
nj = ngpu * njob
wav_scp_file = os.path.join(params["data_dir"], "wav.scp")
with open(wav_scp_file) as f:
lines = f.readlines()
num_lines = len(lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
file = os.path.join(split_dir, "wav.{}.scp".format(str(i + 1)))
with open(file, "w") as f:
if i == nj - 1:
f.writelines(lines[start:])
else:
f.writelines(lines[start:end])
start = end
p = Pool(nj)
for i in range(nj):
p.apply_async(modelscope_infer_core,
args=(output_dir, split_dir, njob, str(i + 1)))
p.close()
p.join()
# combine decoding results
best_recog_path = os.path.join(output_dir, "1best_recog")
os.mkdir(best_recog_path)
files = ["text", "token", "score"]
for file in files:
with open(os.path.join(best_recog_path, file), "w") as f:
for i in range(nj):
job_file = os.path.join(output_dir, "output.{}/1best_recog".format(str(i + 1)), file)
with open(job_file) as f_job:
lines = f_job.readlines()
f.writelines(lines)
# If text exists, compute CER
text_in = os.path.join(params["data_dir"], "text")
if os.path.exists(text_in):
text_proc_file = os.path.join(best_recog_path, "token")
compute_wer(text_in, text_proc_file, os.path.join(best_recog_path, "text.cer"))
os.system("tail -n 3 {}".format(os.path.join(best_recog_path, "text.cer")))
if __name__ == "__main__":
params = {}
params["data_dir"] = "./data/test"
params["output_dir"] = "./results"
params["ngpu"] = 1
params["njob"] = 8
modelscope_infer(params)

View File

@ -0,0 +1,54 @@
import json
import os
import shutil
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from funasr.utils.compute_wer import compute_wer
def modelscope_infer_after_finetune(params):
# prepare for decoding
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
for file_name in params["required_files"]:
if file_name == "configuration.json":
with open(os.path.join(pretrained_model_path, file_name)) as f:
config_dict = json.load(f)
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
json.dump(config_dict, f, indent=4, separators=(',', ': '))
else:
shutil.copy(os.path.join(pretrained_model_path, file_name),
os.path.join(params["output_dir"], file_name))
decoding_path = os.path.join(params["output_dir"], "decode_results")
if os.path.exists(decoding_path):
shutil.rmtree(decoding_path)
os.mkdir(decoding_path)
# decoding
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model=params["output_dir"],
output_dir=decoding_path,
batch_size=1
)
audio_in = os.path.join(params["data_dir"], "wav.scp")
inference_pipeline(audio_in=audio_in)
# computer CER if GT text is set
text_in = os.path.join(params["data_dir"], "text")
if os.path.exists(text_in):
text_proc_file = os.path.join(decoding_path, "1best_recog/token")
compute_wer(text_in, text_proc_file, os.path.join(decoding_path, "text.cer"))
os.system("tail -n 3 {}".format(os.path.join(decoding_path, "text.cer")))
if __name__ == '__main__':
params = {}
params["modelscope_model_name"] = "damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825"
params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json"]
params["output_dir"] = "./checkpoint"
params["data_dir"] = "./data/test"
params["decoding_model_name"] = "20epoch.pth"
modelscope_infer_after_finetune(params)