mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
docs
This commit is contained in:
parent
20619400eb
commit
1fadb21eb6
@ -1,7 +1,7 @@
|
||||
# Quick Start
|
||||
|
||||
> **Note**:
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take typic model as example to demonstrate the usage.
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take typic model as example to demonstrate the usage.
|
||||
|
||||
|
||||
## Inference with pipeline
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# Speech Recognition
|
||||
|
||||
> **Note**:
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take the typic models as examples to demonstrate the usage.
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take the typic models as examples to demonstrate the usage.
|
||||
|
||||
## Inference
|
||||
|
||||
@ -79,7 +79,7 @@ print(rec_result)
|
||||
### API-reference
|
||||
#### Define pipeline
|
||||
- `task`: `Tasks.auto_speech_recognition`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
|
||||
- `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU
|
||||
- `output_dir`: `None` (Default), the output path of results if set
|
||||
@ -103,7 +103,7 @@ print(rec_result)
|
||||
FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
|
||||
|
||||
#### Settings of `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# Punctuation Restoration
|
||||
|
||||
> **Note**:
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetune. Here we take the model of the punctuation model of CT-Transformer as example to demonstrate the usage.
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetune. Here we take the model of the punctuation model of CT-Transformer as example to demonstrate the usage.
|
||||
|
||||
## Inference
|
||||
|
||||
@ -55,7 +55,7 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/
|
||||
### API-reference
|
||||
#### Define pipeline
|
||||
- `task`: `Tasks.punctuation`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
|
||||
- `output_dir`: `None` (Default), the output path of results if set
|
||||
- `model_revision`: `None` (Default), setting the model version
|
||||
@ -71,7 +71,7 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/
|
||||
FunASR also offer recipes [egs_modelscope/punctuation/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/punctuation/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. It is an offline recipe and only support offline model.
|
||||
|
||||
#### Settings of `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `punc.txt`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
> **Note**:
|
||||
> The modelscope pipeline supports all the models in
|
||||
[model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope)
|
||||
[model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope)
|
||||
to inference and finetine. Here we take the model of xvector_sv as example to demonstrate the usage.
|
||||
|
||||
## Inference with pipeline
|
||||
@ -40,7 +40,7 @@ print(results)
|
||||
### API-reference
|
||||
#### Define pipeline
|
||||
- `task`: `Tasks.speaker_diarization`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
|
||||
- `output_dir`: `None` (Default), the output path of results if set
|
||||
- `batch_size`: `1` (Default), batch size when decoding
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
> **Note**:
|
||||
> The modelscope pipeline supports all the models in
|
||||
[model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope)
|
||||
[model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope)
|
||||
to inference and finetine. Here we take the model of xvector_sv as example to demonstrate the usage.
|
||||
|
||||
## Inference with pipeline
|
||||
@ -50,7 +50,7 @@ Full code of demo, please ref to [infer.py](https://github.com/alibaba-damo-acad
|
||||
### API-reference
|
||||
#### Define pipeline
|
||||
- `task`: `Tasks.speaker_verification`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
|
||||
- `output_dir`: `None` (Default), the output path of results if set
|
||||
- `batch_size`: `1` (Default), batch size when decoding
|
||||
|
||||
@ -26,7 +26,7 @@ Timestamp pipeline can also be used after ASR pipeline to compose complete ASR f
|
||||
### API-reference
|
||||
#### Define pipeline
|
||||
- `task`: `Tasks.speech_timestamp`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
|
||||
- `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU
|
||||
- `output_dir`: `None` (Default), the output path of results if set
|
||||
@ -62,7 +62,7 @@ Timestamp pipeline can also be used after ASR pipeline to compose complete ASR f
|
||||
FunASR also offer recipes [egs_modelscope/tp/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/tp/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
|
||||
|
||||
#### Settings of `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir **must** include `wav.scp` and `text.txt`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# Voice Activity Detection
|
||||
|
||||
> **Note**:
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetune. Here we take the model of FSMN-VAD as example to demonstrate the usage.
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetune. Here we take the model of FSMN-VAD as example to demonstrate the usage.
|
||||
|
||||
## Inference
|
||||
|
||||
@ -46,7 +46,7 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/
|
||||
### API-reference
|
||||
#### Define pipeline
|
||||
- `task`: `Tasks.voice_activity_detection`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
|
||||
- `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU
|
||||
- `output_dir`: `None` (Default), the output path of results if set
|
||||
@ -70,7 +70,7 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/
|
||||
FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/vad/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
|
||||
|
||||
#### Settings of `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `wav.scp`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
|
||||
Loading…
Reference in New Issue
Block a user