mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
commit
1f0f44bd07
@ -43,6 +43,7 @@ from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr.models.e2e_asr_paraformer import BiCifParaformer, ContextualParaformer
|
||||
from funasr.export.models.e2e_asr_paraformer import Paraformer as Paraformer_export
|
||||
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
|
||||
from funasr.bin.tp_inference import SpeechText2Timestamp
|
||||
|
||||
|
||||
class Speech2Text:
|
||||
@ -540,7 +541,8 @@ def inference(
|
||||
ngram_weight: float = 0.9,
|
||||
nbest: int = 1,
|
||||
num_workers: int = 1,
|
||||
|
||||
timestamp_infer_config: Union[Path, str] = None,
|
||||
timestamp_model_file: Union[Path, str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
inference_pipeline = inference_modelscope(
|
||||
@ -604,6 +606,8 @@ def inference_modelscope(
|
||||
nbest: int = 1,
|
||||
num_workers: int = 1,
|
||||
output_dir: Optional[str] = None,
|
||||
timestamp_infer_config: Union[Path, str] = None,
|
||||
timestamp_model_file: Union[Path, str] = None,
|
||||
param_dict: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
@ -661,6 +665,15 @@ def inference_modelscope(
|
||||
else:
|
||||
speech2text = Speech2Text(**speech2text_kwargs)
|
||||
|
||||
if timestamp_model_file is not None:
|
||||
speechtext2timestamp = SpeechText2Timestamp(
|
||||
timestamp_cmvn_file=cmvn_file,
|
||||
timestamp_model_file=timestamp_model_file,
|
||||
timestamp_infer_config=timestamp_infer_config,
|
||||
)
|
||||
else:
|
||||
speechtext2timestamp = None
|
||||
|
||||
def _forward(
|
||||
data_path_and_name_and_type,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
@ -744,7 +757,17 @@ def inference_modelscope(
|
||||
key = keys[batch_id]
|
||||
for n, result in zip(range(1, nbest + 1), result):
|
||||
text, token, token_int, hyp = result[0], result[1], result[2], result[3]
|
||||
time_stamp = None if len(result) < 5 else result[4]
|
||||
timestamp = None if len(result) < 5 else result[4]
|
||||
# conduct timestamp prediction here
|
||||
# timestamp inference requires token length
|
||||
# thus following inference cannot be conducted in batch
|
||||
if timestamp is None and speechtext2timestamp:
|
||||
ts_batch = {}
|
||||
ts_batch['speech'] = batch['speech'][batch_id].unsqueeze(0)
|
||||
ts_batch['speech_lengths'] = torch.tensor([batch['speech_lengths'][batch_id]])
|
||||
ts_batch['text_lengths'] = torch.tensor([len(token)])
|
||||
us_alphas, us_peaks = speechtext2timestamp(**ts_batch)
|
||||
ts_str, timestamp = ts_prediction_lfr6_standard(us_alphas[0], us_peaks[0], token, force_time_shift=-3.0)
|
||||
# Create a directory: outdir/{n}best_recog
|
||||
if writer is not None:
|
||||
ibest_writer = writer[f"{n}best_recog"]
|
||||
@ -756,20 +779,20 @@ def inference_modelscope(
|
||||
ibest_writer["rtf"][key] = rtf_cur
|
||||
|
||||
if text is not None:
|
||||
if use_timestamp and time_stamp is not None:
|
||||
postprocessed_result = postprocess_utils.sentence_postprocess(token, time_stamp)
|
||||
if use_timestamp and timestamp is not None:
|
||||
postprocessed_result = postprocess_utils.sentence_postprocess(token, timestamp)
|
||||
else:
|
||||
postprocessed_result = postprocess_utils.sentence_postprocess(token)
|
||||
time_stamp_postprocessed = ""
|
||||
timestamp_postprocessed = ""
|
||||
if len(postprocessed_result) == 3:
|
||||
text_postprocessed, time_stamp_postprocessed, word_lists = postprocessed_result[0], \
|
||||
text_postprocessed, timestamp_postprocessed, word_lists = postprocessed_result[0], \
|
||||
postprocessed_result[1], \
|
||||
postprocessed_result[2]
|
||||
else:
|
||||
text_postprocessed, word_lists = postprocessed_result[0], postprocessed_result[1]
|
||||
item = {'key': key, 'value': text_postprocessed}
|
||||
if time_stamp_postprocessed != "":
|
||||
item['time_stamp'] = time_stamp_postprocessed
|
||||
if timestamp_postprocessed != "":
|
||||
item['timestamp'] = timestamp_postprocessed
|
||||
asr_result_list.append(item)
|
||||
finish_count += 1
|
||||
# asr_utils.print_progress(finish_count / file_count)
|
||||
|
||||
@ -116,8 +116,8 @@ class SpeechText2Timestamp:
|
||||
enc = enc[0]
|
||||
|
||||
# c. Forward Predictor
|
||||
_, _, us_alphas, us_cif_peak = self.tp_model.calc_predictor_timestamp(enc, enc_len, text_lengths.to(self.device)+1)
|
||||
return us_alphas, us_cif_peak
|
||||
_, _, us_alphas, us_peaks = self.tp_model.calc_predictor_timestamp(enc, enc_len, text_lengths.to(self.device)+1)
|
||||
return us_alphas, us_peaks
|
||||
|
||||
|
||||
def inference(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user