mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Dev gzf exp (#1665)
* rwkv 5 * rwkv v4 * rwkv v4 * rwkv * rwkv * update * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step
This commit is contained in:
parent
8fdc372c81
commit
1cdb3cc28d
@ -50,6 +50,7 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
|
||||
self.eos = kwargs.get("eos", "<|endoftext|>")
|
||||
self.batch_size = kwargs.get("batch_size")
|
||||
self.batch_type = kwargs.get("batch_type")
|
||||
self.prompt_ids_len = 0
|
||||
|
||||
def get_source_len(self, index):
|
||||
item = self.index_ds[index]
|
||||
@ -73,6 +74,9 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
|
||||
speech, speech_lengths = extract_fbank(
|
||||
data_src, data_type=self.data_type, frontend=self.frontend, is_final=True
|
||||
) # speech: [b, T, d]
|
||||
|
||||
if speech_lengths > self.batch_size:
|
||||
return None
|
||||
speech = speech.permute(0, 2, 1)
|
||||
target = item["target"]
|
||||
if self.preprocessor_text:
|
||||
@ -84,9 +88,12 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
|
||||
prompt = f"{self.sos}{task}{text_language}"
|
||||
prompt_ids = self.tokenizer.encode(prompt, allowed_special="all")
|
||||
prompt_ids_len = len(prompt_ids) - 1 # [sos, task]
|
||||
self.prompt_ids_len = prompt_ids_len
|
||||
|
||||
target_ids = self.tokenizer.encode(target, allowed_special="all")
|
||||
target_ids_len = len(target_ids) + 1 # [lid, text]
|
||||
if target_ids_len > 200:
|
||||
return None
|
||||
|
||||
eos = self.tokenizer.encode(self.eos, allowed_special="all") # [eos]
|
||||
|
||||
@ -108,16 +115,30 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
|
||||
"text": text,
|
||||
"text_lengths": text_lengths,
|
||||
"target_mask": target_mask,
|
||||
"target_mask_lengths": target_mask_lengths,
|
||||
}
|
||||
|
||||
def collator(self, samples: list = None):
|
||||
outputs = {}
|
||||
for sample in samples:
|
||||
if sample is None:
|
||||
continue
|
||||
for key in sample.keys():
|
||||
if key not in outputs:
|
||||
outputs[key] = []
|
||||
outputs[key].append(sample[key])
|
||||
|
||||
if len(outputs) < 1:
|
||||
logging.info(f"ERROR: data is empty!")
|
||||
outputs = {
|
||||
"speech": torch.rand((10, 128), dtype=torch.float32),
|
||||
"speech_lengths": torch.tensor([10], dtype=torch.int32),
|
||||
"text": torch.tensor([58836], dtype=torch.int32),
|
||||
"text_lengths": torch.tensor([1], dtype=torch.int32),
|
||||
"target_mask": torch.tensor([[0] * (self.prompt_ids_len) + [1] * (1) + [1]]),
|
||||
}
|
||||
return outputs
|
||||
|
||||
for key, data_list in outputs.items():
|
||||
if isinstance(data_list[0], torch.Tensor):
|
||||
if data_list[0].dtype == torch.int64 or data_list[0].dtype == torch.int32:
|
||||
@ -132,25 +153,29 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
|
||||
|
||||
if self.batch_type != "example":
|
||||
for i in range(3):
|
||||
outputs = self._filter_badcase(outputs)
|
||||
outputs = self._filter_badcase(outputs, i=i)
|
||||
|
||||
return outputs
|
||||
|
||||
def _filter_badcase(self, outputs, i=0):
|
||||
b, t, _ = outputs["speech"].shape
|
||||
if b * t > self.batch_size:
|
||||
|
||||
if b * t > self.batch_size * 1.25:
|
||||
beg = torch.randint(0, 2, ()).item()
|
||||
if b < 2:
|
||||
beg = 0
|
||||
logging.info(
|
||||
f"Warning, b * t: {b * t} > {self.batch_size}, drop half data {i}th, beg:{beg}"
|
||||
)
|
||||
for key, data_list in outputs.items():
|
||||
outputs[key] = outputs[key][beg : beg + b : 2]
|
||||
|
||||
speech_lengths_max = outputs["speech_lengths_max"].max().item()
|
||||
|
||||
speech_lengths_max = outputs["speech_lengths"].max().item()
|
||||
outputs["speech"] = outputs["speech"][:, :speech_lengths_max, :]
|
||||
text_lengths_max = outputs["text_lengths"].max().item()
|
||||
outputs["text"] = outputs["text"][:, :text_lengths_max]
|
||||
target_mask_lengths_max = outputs["target_mask_lengths_max"].max().item()
|
||||
target_mask_lengths_max = outputs["target_mask_lengths"].max().item()
|
||||
outputs["target_mask"] = outputs["target_mask"][:, :target_mask_lengths_max]
|
||||
|
||||
return outputs
|
||||
|
||||
@ -309,7 +309,7 @@ class SenseVoiceRWKV(nn.Module):
|
||||
if len(speech_lengths.size()) > 1:
|
||||
speech_lengths = speech_lengths[:, 0]
|
||||
|
||||
batch_size = speech.shape[0]
|
||||
batch_size, frames, _ = speech.shape
|
||||
|
||||
if self.activation_checkpoint:
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
@ -328,6 +328,7 @@ class SenseVoiceRWKV(nn.Module):
|
||||
stats["acc"] = acc_att
|
||||
stats["loss"] = torch.clone(loss.detach())
|
||||
stats["batch_size"] = batch_size
|
||||
stats["batch_size_x_frames"] = frames * batch_size
|
||||
|
||||
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||||
if self.length_normalized_loss:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user