diff --git a/funasr/bin/train.py b/funasr/bin/train.py index c0e41575d..cbbf1fad1 100644 --- a/funasr/bin/train.py +++ b/funasr/bin/train.py @@ -1,17 +1,21 @@ import logging import os import sys +from io import BytesIO import torch +from funasr.torch_utils.model_summary import model_summary +from funasr.torch_utils.pytorch_version import pytorch_cudnn_version from funasr.torch_utils.set_all_random_seed import set_all_random_seed from funasr.utils import config_argparse from funasr.utils.build_dataloader import build_dataloader from funasr.utils.build_distributed import build_distributed -from funasr.utils.prepare_data import prepare_data from funasr.utils.build_optimizer import build_optimizer from funasr.utils.build_scheduler import build_scheduler +from funasr.utils.prepare_data import prepare_data from funasr.utils.types import str2bool +from funasr.utils.yaml_no_alias_safe_dump import yaml_no_alias_safe_dump def get_parser(): @@ -326,9 +330,17 @@ if __name__ == '__main__': parser = get_parser() args = parser.parse_args() + # set random seed + set_all_random_seed(args.seed) + torch.backends.cudnn.enabled = args.cudnn_enabled + torch.backends.cudnn.benchmark = args.cudnn_benchmark + torch.backends.cudnn.deterministic = args.cudnn_deterministic + # ddp init args.distributed = args.dist_world_size > 1 distributed_option = build_distributed(args) + + # for logging if not distributed_option.distributed or distributed_option.dist_rank == 0: logging.basicConfig( level="INFO", @@ -345,18 +357,28 @@ if __name__ == '__main__': # prepare files for dataloader prepare_data(args, distributed_option) - # set random seed - set_all_random_seed(args.seed) - torch.backends.cudnn.enabled = args.cudnn_enabled - torch.backends.cudnn.benchmark = args.cudnn_benchmark - torch.backends.cudnn.deterministic = args.cudnn_deterministic - - train_dataloader, valid_dataloader = build_dataloader(args) + model = build_model(args) + optimizer = build_optimizer(args, model=model) + scheduler = build_scheduler(args, optimizer) logging.info("world size: {}, rank: {}, local_rank: {}".format(distributed_option.dist_world_size, distributed_option.dist_rank, distributed_option.local_rank)) + logging.info(pytorch_cudnn_version()) + logging.info(model_summary(model)) + logging.info("Optimizer: {}".format(optimizer)) + logging.info("Scheduler: {}".format(scheduler)) - model = build_model(args) - optimizers = build_optimizer(args, model=model) - schedule = build_scheduler(args) + # dump args to config.yaml + if not distributed_option.distributed or distributed_option.dist_rank == 0: + os.makedirs(args.output_dir, exist_ok=True) + with open(os.path.join(args.output_dir, "config.yaml"), "w") as f: + logging.info("Saving the configuration in {}/{}".format(args.output_dir, "config.yaml")) + if args.use_pai: + buffer = BytesIO() + torch.save({"config": vars(args)}, buffer) + args.oss_bucket.put_object(os.path.join(args.output_dir, "config.dict"), buffer.getvalue()) + else: + yaml_no_alias_safe_dump(vars(args), f, indent=4, sort_keys=False) + + train_dataloader, valid_dataloader = build_dataloader(args)