diff --git a/examples/industrial_data_pretraining/paraformer_streaming/README_zh.md b/examples/industrial_data_pretraining/paraformer_streaming/README_zh.md new file mode 100644 index 000000000..8ddb202a2 --- /dev/null +++ b/examples/industrial_data_pretraining/paraformer_streaming/README_zh.md @@ -0,0 +1,42 @@ +(简体中文|[English](./README.md)) + +# 语音识别 + +> **注意**: +> pipeline 支持 [modelscope模型仓库](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) 中的所有模型进行推理和微调。这里我们以典型模型作为示例来演示使用方法。 + +## 推理 + +### 快速使用 +#### [Paraformer 模型](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) +```python +from funasr import AutoModel + +model = AutoModel(model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch") + +res = model(input="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav") +print(res) +``` + +### API接口说明 +#### AutoModel 定义 +- `model`: [模型仓库](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) 中的模型名称,或本地磁盘中的模型路径 +- `device`: `cuda`(默认),使用 GPU 进行推理。如果为`cpu`,则使用 CPU 进行推理 +- `ncpu`: `None` (默认),设置用于 CPU 内部操作并行性的线程数 +- `output_dir`: `None` (默认),如果设置,输出结果的输出路径 +- `batch_size`: `1` (默认),解码时的批处理大小 +#### AutoModel 推理 +- `input`: 要解码的输入,可以是: + - wav文件路径, 例如: asr_example.wav + - pcm文件路径, 例如: asr_example.pcm,此时需要指定音频采样率fs(默认为16000) + - 音频字节数流,例如:麦克风的字节数数据 + - wav.scp,kaldi 样式的 wav 列表 (`wav_id \t wav_path`), 例如: + ```text + asr_example1 ./audios/asr_example1.wav + asr_example2 ./audios/asr_example2.wav + ``` + 在这种输入 `wav.scp` 的情况下,必须设置 `output_dir` 以保存输出结果 + - 音频采样点,例如:`audio, rate = soundfile.read("asr_example_zh.wav")`, 数据类型为 numpy.ndarray。支持batch输入,类型为list: + ```[audio_sample1, audio_sample2, ..., audio_sampleN]``` + - fbank输入,支持组batch。shape为[batch, frames, dim],类型为torch.Tensor,例如 +- `output_dir`: None (默认),如果设置,输出结果的输出路径 diff --git a/examples/industrial_data_pretraining/paraformer_streaming/demo.py b/examples/industrial_data_pretraining/paraformer_streaming/demo.py new file mode 100644 index 000000000..0036e77e1 --- /dev/null +++ b/examples/industrial_data_pretraining/paraformer_streaming/demo.py @@ -0,0 +1,38 @@ +#!/usr/bin/env python3 +# -*- encoding: utf-8 -*- +# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. +# MIT License (https://opensource.org/licenses/MIT) + +# from funasr import AutoModel +# +# model = AutoModel(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", model_revison="v2.0.0") +# +# res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav") +# print(res) + + +from funasr import AutoFrontend + +frontend = AutoFrontend(model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online", model_revison="v2.0.0") + + + +import soundfile +speech, sample_rate = soundfile.read("/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online/example/asr_example.wav") + +chunk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms +chunk_stride = chunk_size[1] * 960 # 600ms、480ms +# first chunk, 600ms + +cache = {} + +for i in range(int(len((speech)-1)/chunk_stride+1)): + speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] + fbanks = frontend(input=speech_chunk, + batch_size=2, + cache=cache) + + +# for batch_idx, fbank_dict in enumerate(fbanks): +# res = model(**fbank_dict) +# print(res) \ No newline at end of file diff --git a/examples/industrial_data_pretraining/paraformer_streaming/finetune.sh b/examples/industrial_data_pretraining/paraformer_streaming/finetune.sh new file mode 100644 index 000000000..6dca09f83 --- /dev/null +++ b/examples/industrial_data_pretraining/paraformer_streaming/finetune.sh @@ -0,0 +1,14 @@ + +# download model +local_path_root=../modelscope_models +mkdir -p ${local_path_root} +local_path=${local_path_root}/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch +git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git ${local_path} + + +python funasr/bin/train.py \ ++model="../modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \ ++token_list="../modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/tokens.txt" \ ++train_data_set_list="data/list/audio_datasets.jsonl" \ ++output_dir="outputs/debug/ckpt/funasr2/exp2" \ ++device="cpu" \ No newline at end of file diff --git a/examples/industrial_data_pretraining/paraformer_streaming/infer.sh b/examples/industrial_data_pretraining/paraformer_streaming/infer.sh new file mode 100644 index 000000000..9436628b7 --- /dev/null +++ b/examples/industrial_data_pretraining/paraformer_streaming/infer.sh @@ -0,0 +1,11 @@ + +model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" +model_revision="v2.0.0" + +python funasr/bin/inference.py \ ++model=${model} \ ++model_revision=${model_revision} \ ++input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav" \ ++output_dir="./outputs/debug" \ ++device="cpu" \ + diff --git a/funasr/bin/inference.py b/funasr/bin/inference.py index dedaf7d48..c4ff69bda 100644 --- a/funasr/bin/inference.py +++ b/funasr/bin/inference.py @@ -391,7 +391,10 @@ class AutoFrontend: frontend = frontend_class(**kwargs["frontend_conf"]) self.frontend = frontend + if "frontend" in kwargs: + del kwargs["frontend"] self.kwargs = kwargs + def __call__(self, input, input_len=None, kwargs=None, **cfg): @@ -423,7 +426,7 @@ class AutoFrontend: time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), - frontend=self.frontend) + frontend=self.frontend, **kwargs) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000 diff --git a/funasr/frontends/wav_frontend.py b/funasr/frontends/wav_frontend.py index 746bf82ce..fe223357f 100644 --- a/funasr/frontends/wav_frontend.py +++ b/funasr/frontends/wav_frontend.py @@ -1,7 +1,7 @@ # Copyright (c) Alibaba, Inc. and its affiliates. # Part of the implementation is borrowed from espnet/espnet. from typing import Tuple - +import copy import numpy as np import torch import torch.nn as nn @@ -119,7 +119,9 @@ class WavFrontend(nn.Module): def forward( self, input: torch.Tensor, - input_lengths) -> Tuple[torch.Tensor, torch.Tensor]: + input_lengths, + **kwargs, + ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = input.size(0) feats = [] feats_lens = [] @@ -249,13 +251,13 @@ class WavFrontendOnline(nn.Module): self.dither = dither self.snip_edges = snip_edges self.upsacle_samples = upsacle_samples - self.waveforms = None - self.reserve_waveforms = None - self.fbanks = None - self.fbanks_lens = None + # self.waveforms = None + # self.reserve_waveforms = None + # self.fbanks = None + # self.fbanks_lens = None self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file) - self.input_cache = None - self.lfr_splice_cache = [] + # self.input_cache = None + # self.lfr_splice_cache = [] def output_size(self) -> int: return self.n_mels * self.lfr_m @@ -278,9 +280,6 @@ class WavFrontendOnline(nn.Module): return inputs.type(torch.float32) @staticmethod - # inputs tensor has catted the cache tensor - # def apply_lfr(inputs: torch.Tensor, lfr_m: int, lfr_n: int, inputs_lfr_cache: torch.Tensor = None, - # is_final: bool = False) -> Tuple[torch.Tensor, torch.Tensor, int]: def apply_lfr(inputs: torch.Tensor, lfr_m: int, lfr_n: int, is_final: bool = False) -> Tuple[ torch.Tensor, torch.Tensor, int]: """ @@ -319,15 +318,16 @@ class WavFrontendOnline(nn.Module): def forward_fbank( self, input: torch.Tensor, - input_lengths: torch.Tensor + input_lengths: torch.Tensor, + cache: dict = {}, + **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: batch_size = input.size(0) - if self.input_cache is None: - self.input_cache = torch.empty(0) - input = torch.cat((self.input_cache, input), dim=1) + + input = torch.cat((cache["input_cache"], input), dim=1) frame_num = self.compute_frame_num(input.shape[-1], self.frame_sample_length, self.frame_shift_sample_length) # update self.in_cache - self.input_cache = input[:, -(input.shape[-1] - frame_num * self.frame_shift_sample_length):] + cache["input_cache"] = input[:, -(input.shape[-1] - frame_num * self.frame_shift_sample_length):] waveforms = torch.empty(0) feats_pad = torch.empty(0) feats_lens = torch.empty(0) @@ -360,20 +360,19 @@ class WavFrontendOnline(nn.Module): feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0) - self.fbanks = feats_pad - import copy - self.fbanks_lens = copy.deepcopy(feats_lens) + cache["fbanks"] = feats_pad + cache["fbanks_lens"]= copy.deepcopy(feats_lens) return waveforms, feats_pad, feats_lens - def get_fbank(self) -> Tuple[torch.Tensor, torch.Tensor]: - return self.fbanks, self.fbanks_lens def forward_lfr_cmvn( self, input: torch.Tensor, input_lengths: torch.Tensor, - is_final: bool = False - ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + is_final: bool = False, + cache: dict = {}, + **kwargs, + ): batch_size = input.size(0) feats = [] feats_lens = [] @@ -383,7 +382,7 @@ class WavFrontendOnline(nn.Module): if self.lfr_m != 1 or self.lfr_n != 1: # update self.lfr_splice_cache in self.apply_lfr # mat, self.lfr_splice_cache[i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n, self.lfr_splice_cache[i], - mat, self.lfr_splice_cache[i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n, + mat, cache["lfr_splice_cache"][i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n, is_final) if self.cmvn_file is not None: mat = self.apply_cmvn(mat, self.cmvn) @@ -400,63 +399,68 @@ class WavFrontendOnline(nn.Module): return feats_pad, feats_lens, lfr_splice_frame_idxs def forward( - self, input: torch.Tensor, input_lengths: torch.Tensor, is_final: bool = False, reset: bool = False - ) -> Tuple[torch.Tensor, torch.Tensor]: - if reset: - self.cache_reset() + self, input: torch.Tensor, input_lengths: torch.Tensor, cache: dict = {}, **kwargs + ): + is_final = kwargs.get("is_final", False) + reset = kwargs.get("reset", False) + if len(cache) == 0 or reset: + self.init_cache(cache) + batch_size = input.shape[0] assert batch_size == 1, 'we support to extract feature online only when the batch size is equal to 1 now' - waveforms, feats, feats_lengths = self.forward_fbank(input, input_lengths) # input shape: B T D + + waveforms, feats, feats_lengths = self.forward_fbank(input, input_lengths, cache=cache) # input shape: B T D + if feats.shape[0]: - # if self.reserve_waveforms is None and self.lfr_m > 1: - # self.reserve_waveforms = waveforms[:, :(self.lfr_m - 1) // 2 * self.frame_shift_sample_length] - self.waveforms = waveforms if self.reserve_waveforms is None else torch.cat( - (self.reserve_waveforms, waveforms), dim=1) - if not self.lfr_splice_cache: # 初始化splice_cache + + cache["waveforms"] = torch.cat((cache["reserve_waveforms"], waveforms), dim=1) + + if not cache["lfr_splice_cache"]: # 初始化splice_cache for i in range(batch_size): - self.lfr_splice_cache.append(feats[i][0, :].unsqueeze(dim=0).repeat((self.lfr_m - 1) // 2, 1)) + cache["lfr_splice_cache"].append(feats[i][0, :].unsqueeze(dim=0).repeat((self.lfr_m - 1) // 2, 1)) # need the number of the input frames + self.lfr_splice_cache[0].shape[0] is greater than self.lfr_m - if feats_lengths[0] + self.lfr_splice_cache[0].shape[0] >= self.lfr_m: - lfr_splice_cache_tensor = torch.stack(self.lfr_splice_cache) # B T D + if feats_lengths[0] + cache["lfr_splice_cache"][0].shape[0] >= self.lfr_m: + lfr_splice_cache_tensor = torch.stack(cache["lfr_splice_cache"]) # B T D feats = torch.cat((lfr_splice_cache_tensor, feats), dim=1) feats_lengths += lfr_splice_cache_tensor[0].shape[0] frame_from_waveforms = int( - (self.waveforms.shape[1] - self.frame_sample_length) / self.frame_shift_sample_length + 1) - minus_frame = (self.lfr_m - 1) // 2 if self.reserve_waveforms is None else 0 - feats, feats_lengths, lfr_splice_frame_idxs = self.forward_lfr_cmvn(feats, feats_lengths, is_final) + (cache["waveforms"].shape[1] - self.frame_sample_length) / self.frame_shift_sample_length + 1) + minus_frame = (self.lfr_m - 1) // 2 if cache["reserve_waveforms"].numel() == 0 else 0 + feats, feats_lengths, lfr_splice_frame_idxs = self.forward_lfr_cmvn(feats, feats_lengths, is_final, cache=cache) if self.lfr_m == 1: - self.reserve_waveforms = None + cache["reserve_waveforms"] = torch.empty(0) else: reserve_frame_idx = lfr_splice_frame_idxs[0] - minus_frame # print('reserve_frame_idx: ' + str(reserve_frame_idx)) # print('frame_frame: ' + str(frame_from_waveforms)) - self.reserve_waveforms = self.waveforms[:, reserve_frame_idx * self.frame_shift_sample_length:frame_from_waveforms * self.frame_shift_sample_length] + cache["reserve_waveforms"] = cache["waveforms"][:, reserve_frame_idx * self.frame_shift_sample_length:frame_from_waveforms * self.frame_shift_sample_length] sample_length = (frame_from_waveforms - 1) * self.frame_shift_sample_length + self.frame_sample_length - self.waveforms = self.waveforms[:, :sample_length] + cache["waveforms"] = cache["waveforms"][:, :sample_length] else: # update self.reserve_waveforms and self.lfr_splice_cache - self.reserve_waveforms = self.waveforms[:, - :-(self.frame_sample_length - self.frame_shift_sample_length)] + cache["reserve_waveforms"] = cache["waveforms"][:, :-(self.frame_sample_length - self.frame_shift_sample_length)] for i in range(batch_size): - self.lfr_splice_cache[i] = torch.cat((self.lfr_splice_cache[i], feats[i]), dim=0) + cache["lfr_splice_cache"][i] = torch.cat((cache["lfr_splice_cache"][i], feats[i]), dim=0) return torch.empty(0), feats_lengths else: if is_final: - self.waveforms = waveforms if self.reserve_waveforms is None else self.reserve_waveforms - feats = torch.stack(self.lfr_splice_cache) + cache["waveforms"] = waveforms if cache["reserve_waveforms"].numel() == 0 else cache["reserve_waveforms"] + feats = torch.stack(cache["lfr_splice_cache"]) feats_lengths = torch.zeros(batch_size, dtype=torch.int) + feats.shape[1] - feats, feats_lengths, _ = self.forward_lfr_cmvn(feats, feats_lengths, is_final) + feats, feats_lengths, _ = self.forward_lfr_cmvn(feats, feats_lengths, is_final, cache=cache) if is_final: - self.cache_reset() + self.init_cache(cache) return feats, feats_lengths - def get_waveforms(self): - return self.waveforms - def cache_reset(self): - self.reserve_waveforms = None - self.input_cache = None - self.lfr_splice_cache = [] + def init_cache(self, cache: dict = {}): + cache["reserve_waveforms"] = torch.empty(0) + cache["input_cache"] = torch.empty(0) + cache["lfr_splice_cache"] = [] + cache["waveforms"] = None + cache["fbanks"] = None + cache["fbanks_lens"] = None + return cache class WavFrontendMel23(nn.Module): diff --git a/funasr/frontends/wav_frontend_kaldifeat.py b/funasr/frontends/wav_frontend_kaldifeat.py deleted file mode 100644 index 5372de321..000000000 --- a/funasr/frontends/wav_frontend_kaldifeat.py +++ /dev/null @@ -1,69 +0,0 @@ -# Copyright (c) Alibaba, Inc. and its affiliates. -# Part of the implementation is borrowed from espnet/espnet. - -import numpy as np -import torch - - -def load_cmvn(cmvn_file): - with open(cmvn_file, 'r', encoding='utf-8') as f: - lines = f.readlines() - means_list = [] - vars_list = [] - for i in range(len(lines)): - line_item = lines[i].split() - if line_item[0] == '': - line_item = lines[i + 1].split() - if line_item[0] == '': - add_shift_line = line_item[3:(len(line_item) - 1)] - means_list = list(add_shift_line) - continue - elif line_item[0] == '': - line_item = lines[i + 1].split() - if line_item[0] == '': - rescale_line = line_item[3:(len(line_item) - 1)] - vars_list = list(rescale_line) - continue - means = np.array(means_list).astype(np.float) - vars = np.array(vars_list).astype(np.float) - cmvn = np.array([means, vars]) - cmvn = torch.as_tensor(cmvn) - return cmvn - - -def apply_cmvn(inputs, cmvn_file): # noqa - """ - Apply CMVN with mvn data - """ - - device = inputs.device - dtype = inputs.dtype - frame, dim = inputs.shape - - cmvn = load_cmvn(cmvn_file) - means = np.tile(cmvn[0:1, :dim], (frame, 1)) - vars = np.tile(cmvn[1:2, :dim], (frame, 1)) - inputs += torch.from_numpy(means).type(dtype).to(device) - inputs *= torch.from_numpy(vars).type(dtype).to(device) - - return inputs.type(torch.float32) - - -def apply_lfr(inputs, lfr_m, lfr_n): - LFR_inputs = [] - T = inputs.shape[0] - T_lfr = int(np.ceil(T / lfr_n)) - left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1) - inputs = torch.vstack((left_padding, inputs)) - T = T + (lfr_m - 1) // 2 - for i in range(T_lfr): - if lfr_m <= T - i * lfr_n: - LFR_inputs.append((inputs[i * lfr_n:i * lfr_n + lfr_m]).view(1, -1)) - else: # process last LFR frame - num_padding = lfr_m - (T - i * lfr_n) - frame = (inputs[i * lfr_n:]).view(-1) - for _ in range(num_padding): - frame = torch.hstack((frame, inputs[-1])) - LFR_inputs.append(frame) - LFR_outputs = torch.vstack(LFR_inputs) - return LFR_outputs.type(torch.float32) diff --git a/funasr/utils/load_utils.py b/funasr/utils/load_utils.py index c82987f71..39b708a68 100644 --- a/funasr/utils/load_utils.py +++ b/funasr/utils/load_utils.py @@ -68,7 +68,7 @@ def load_bytes(input): array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32) return array -def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None): +def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None, **kwargs): # import pdb; # pdb.set_trace() if isinstance(data, np.ndarray): @@ -83,7 +83,7 @@ def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None): elif isinstance(data, (list, tuple)): data_list, data_len = [], [] for data_i in data: - if isinstance(data, np.ndarray): + if isinstance(data_i, np.ndarray): data_i = torch.from_numpy(data_i) data_list.append(data_i) data_len.append(data_i.shape[0]) @@ -91,7 +91,7 @@ def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None): # import pdb; # pdb.set_trace() # if data_type == "sound": - data, data_len = frontend(data, data_len) + data, data_len = frontend(data, data_len, **kwargs) if isinstance(data_len, (list, tuple)): data_len = torch.tensor([data_len])