mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
test
This commit is contained in:
parent
d2f1cf39f8
commit
0a7384a1ec
@ -294,10 +294,11 @@ class ContextualParaformer(Paraformer):
|
||||
enforce_sorted=False)
|
||||
_, (h_n, _) = self.bias_encoder(hw_embed)
|
||||
hw_embed = h_n.repeat(encoder_out.shape[0], 1, 1)
|
||||
|
||||
pdb.set_trace()
|
||||
decoder_outs = self.decoder(
|
||||
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, contextual_info=hw_embed, clas_scale=clas_scale
|
||||
)
|
||||
pdb.set_trace()
|
||||
decoder_out = decoder_outs[0]
|
||||
decoder_out = torch.log_softmax(decoder_out, dim=-1)
|
||||
return decoder_out, ys_pad_lens
|
||||
@ -311,65 +312,55 @@ class ContextualParaformer(Paraformer):
|
||||
**kwargs,
|
||||
):
|
||||
# init beamsearch
|
||||
pdb.set_trace()
|
||||
|
||||
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
|
||||
is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
|
||||
if self.beam_search is None and (is_use_lm or is_use_ctc):
|
||||
logging.info("enable beam_search")
|
||||
self.init_beam_search(**kwargs)
|
||||
self.nbest = kwargs.get("nbest", 1)
|
||||
pdb.set_trace()
|
||||
|
||||
meta_data = {}
|
||||
|
||||
# extract fbank feats
|
||||
time1 = time.perf_counter()
|
||||
pdb.set_trace()
|
||||
|
||||
audio_sample_list = load_audio_text_image_video(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
|
||||
pdb.set_trace()
|
||||
|
||||
time2 = time.perf_counter()
|
||||
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
||||
pdb.set_trace()
|
||||
|
||||
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
|
||||
frontend=frontend)
|
||||
time3 = time.perf_counter()
|
||||
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
||||
meta_data[
|
||||
"batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
speech = speech.to(device=kwargs["device"])
|
||||
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
||||
|
||||
# hotword
|
||||
pdb.set_trace()
|
||||
self.hotword_list = self.generate_hotwords_list(kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend)
|
||||
pdb.set_trace()
|
||||
|
||||
|
||||
# Encoder
|
||||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||||
if isinstance(encoder_out, tuple):
|
||||
encoder_out = encoder_out[0]
|
||||
pdb.set_trace()
|
||||
|
||||
|
||||
# predictor
|
||||
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
|
||||
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = predictor_outs[0], predictor_outs[1], \
|
||||
predictor_outs[2], predictor_outs[3]
|
||||
pdb.set_trace()
|
||||
pre_token_length = pre_token_length.round().long()
|
||||
if torch.max(pre_token_length) < 1:
|
||||
return []
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
decoder_outs = self.cal_decoder_with_predictor(encoder_out, encoder_out_lens,
|
||||
pre_acoustic_embeds,
|
||||
pre_token_length,
|
||||
hw_list=self.hotword_list,
|
||||
clas_scale=kwargs.get("clas_scale", 1.0))
|
||||
pdb.set_trace()
|
||||
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user