mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
sond pipeline
This commit is contained in:
parent
64bd74c7be
commit
0a6ff596c6
@ -0,0 +1,121 @@
|
||||
model: sond
|
||||
model_conf:
|
||||
lsm_weight: 0.0
|
||||
length_normalized_loss: true
|
||||
max_spk_num: 16
|
||||
|
||||
# speech encoder
|
||||
encoder: ecapa_tdnn
|
||||
encoder_conf:
|
||||
# pass by model, equal to feature dim
|
||||
# input_size: 80
|
||||
pool_size: 20
|
||||
stride: 1
|
||||
speaker_encoder: conv
|
||||
speaker_encoder_conf:
|
||||
input_units: 256
|
||||
num_layers: 3
|
||||
num_units: 256
|
||||
kernel_size: 1
|
||||
dropout_rate: 0.0
|
||||
position_encoder: null
|
||||
out_units: 256
|
||||
out_norm: false
|
||||
auxiliary_states: false
|
||||
tf2torch_tensor_name_prefix_torch: speaker_encoder
|
||||
tf2torch_tensor_name_prefix_tf: EAND/speaker_encoder
|
||||
ci_scorer: dot
|
||||
ci_scorer_conf: {}
|
||||
cd_scorer: san
|
||||
cd_scorer_conf:
|
||||
input_size: 512
|
||||
output_size: 512
|
||||
out_units: 1
|
||||
attention_heads: 4
|
||||
linear_units: 1024
|
||||
num_blocks: 4
|
||||
dropout_rate: 0.0
|
||||
positional_dropout_rate: 0.0
|
||||
attention_dropout_rate: 0.0
|
||||
# use string "null" to remove input layer
|
||||
input_layer: "null"
|
||||
pos_enc_class: null
|
||||
normalize_before: true
|
||||
tf2torch_tensor_name_prefix_torch: cd_scorer
|
||||
tf2torch_tensor_name_prefix_tf: EAND/compute_distance_layer
|
||||
# post net
|
||||
decoder: fsmn
|
||||
decoder_conf:
|
||||
in_units: 32
|
||||
out_units: 2517
|
||||
filter_size: 31
|
||||
fsmn_num_layers: 6
|
||||
dnn_num_layers: 1
|
||||
num_memory_units: 512
|
||||
ffn_inner_dim: 512
|
||||
dropout_rate: 0.0
|
||||
tf2torch_tensor_name_prefix_torch: decoder
|
||||
tf2torch_tensor_name_prefix_tf: EAND/post_net
|
||||
frontend: wav_frontend
|
||||
frontend_conf:
|
||||
fs: 16000
|
||||
window: povey
|
||||
n_mels: 80
|
||||
frame_length: 25
|
||||
frame_shift: 10
|
||||
filter_length_min: -1
|
||||
filter_length_max: -1
|
||||
lfr_m: 1
|
||||
lfr_n: 1
|
||||
dither: 0.0
|
||||
snip_edges: false
|
||||
|
||||
# minibatch related
|
||||
batch_type: length
|
||||
# 16s * 16k * 16 samples
|
||||
batch_bins: 4096000
|
||||
num_workers: 8
|
||||
|
||||
# optimization related
|
||||
accum_grad: 1
|
||||
grad_clip: 5
|
||||
max_epoch: 50
|
||||
val_scheduler_criterion:
|
||||
- valid
|
||||
- acc
|
||||
best_model_criterion:
|
||||
- - valid
|
||||
- der
|
||||
- min
|
||||
- - valid
|
||||
- forward_steps
|
||||
- max
|
||||
keep_nbest_models: 10
|
||||
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001
|
||||
scheduler: warmuplr
|
||||
scheduler_conf:
|
||||
warmup_steps: 10000
|
||||
|
||||
# without spec aug
|
||||
specaug: null
|
||||
specaug_conf:
|
||||
apply_time_warp: true
|
||||
time_warp_window: 5
|
||||
time_warp_mode: bicubic
|
||||
apply_freq_mask: true
|
||||
freq_mask_width_range:
|
||||
- 0
|
||||
- 30
|
||||
num_freq_mask: 2
|
||||
apply_time_mask: true
|
||||
time_mask_width_range:
|
||||
- 0
|
||||
- 40
|
||||
num_time_mask: 2
|
||||
|
||||
log_interval: 50
|
||||
# without normalize
|
||||
normalize: None
|
||||
171
egs/mars/sd/local_run.sh
Executable file
171
egs/mars/sd/local_run.sh
Executable file
@ -0,0 +1,171 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
. ./path.sh || exit 1;
|
||||
|
||||
# machines configuration
|
||||
CUDA_VISIBLE_DEVICES="6,7"
|
||||
gpu_num=2
|
||||
count=1
|
||||
gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
|
||||
# for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
|
||||
njob=5
|
||||
train_cmd=utils/run.pl
|
||||
infer_cmd=utils/run.pl
|
||||
|
||||
# general configuration
|
||||
feats_dir="." #feature output dictionary
|
||||
exp_dir="."
|
||||
lang=zh
|
||||
dumpdir=dump/raw
|
||||
feats_type=raw
|
||||
token_type=char
|
||||
scp=wav.scp
|
||||
type=kaldi_ark
|
||||
stage=3
|
||||
stop_stage=4
|
||||
|
||||
# feature configuration
|
||||
feats_dim=
|
||||
sample_frequency=16000
|
||||
nj=32
|
||||
speed_perturb=
|
||||
|
||||
# exp tag
|
||||
tag="exp1"
|
||||
|
||||
. utils/parse_options.sh || exit 1;
|
||||
|
||||
# Set bash to 'debug' mode, it will exit on :
|
||||
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
|
||||
set -e
|
||||
set -u
|
||||
set -o pipefail
|
||||
|
||||
train_set=train
|
||||
valid_set=dev
|
||||
test_sets="dev test"
|
||||
|
||||
asr_config=conf/train_asr_conformer.yaml
|
||||
model_dir="baseline_$(basename "${asr_config}" .yaml)_${feats_type}_${lang}_${token_type}_${tag}"
|
||||
|
||||
inference_config=conf/decode_asr_transformer.yaml
|
||||
inference_asr_model=valid.acc.ave_10best.pth
|
||||
|
||||
# you can set gpu num for decoding here
|
||||
gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default
|
||||
ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
|
||||
|
||||
if ${gpu_inference}; then
|
||||
inference_nj=$[${ngpu}*${njob}]
|
||||
_ngpu=1
|
||||
else
|
||||
inference_nj=$njob
|
||||
_ngpu=0
|
||||
fi
|
||||
|
||||
feat_train_dir=${feats_dir}/${dumpdir}/train; mkdir -p ${feat_train_dir}
|
||||
feat_dev_dir=${feats_dir}/${dumpdir}/dev; mkdir -p ${feat_dev_dir}
|
||||
feat_test_dir=${feats_dir}/${dumpdir}/test; mkdir -p ${feat_test_dir}
|
||||
|
||||
# Training Stage
|
||||
world_size=$gpu_num # run on one machine
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
echo "stage 3: Training"
|
||||
mkdir -p ${exp_dir}/exp/${model_dir}
|
||||
mkdir -p ${exp_dir}/exp/${model_dir}/log
|
||||
INIT_FILE=${exp_dir}/exp/${model_dir}/ddp_init
|
||||
if [ -f $INIT_FILE ];then
|
||||
rm -f $INIT_FILE
|
||||
fi
|
||||
init_method=file://$(readlink -f $INIT_FILE)
|
||||
echo "$0: init method is $init_method"
|
||||
for ((i = 0; i < $gpu_num; ++i)); do
|
||||
{
|
||||
rank=$i
|
||||
local_rank=$i
|
||||
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
|
||||
asr_train.py \
|
||||
--gpu_id $gpu_id \
|
||||
--use_preprocessor true \
|
||||
--token_type char \
|
||||
--token_list $token_list \
|
||||
--train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/${scp},speech,${type} \
|
||||
--train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/text,text,text \
|
||||
--train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/speech_shape \
|
||||
--train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/text_shape.char \
|
||||
--valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/${scp},speech,${type} \
|
||||
--valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/text,text,text \
|
||||
--valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/speech_shape \
|
||||
--valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/text_shape.char \
|
||||
--resume true \
|
||||
--output_dir ${exp_dir}/exp/${model_dir} \
|
||||
--config $asr_config \
|
||||
--input_size $feats_dim \
|
||||
--ngpu $gpu_num \
|
||||
--num_worker_count $count \
|
||||
--multiprocessing_distributed true \
|
||||
--dist_init_method $init_method \
|
||||
--dist_world_size $world_size \
|
||||
--dist_rank $rank \
|
||||
--local_rank $local_rank 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1
|
||||
} &
|
||||
done
|
||||
wait
|
||||
fi
|
||||
|
||||
# Testing Stage
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
echo "stage 4: Inference"
|
||||
for dset in ${test_sets}; do
|
||||
asr_exp=${exp_dir}/exp/${model_dir}
|
||||
inference_tag="$(basename "${inference_config}" .yaml)"
|
||||
_dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
|
||||
_logdir="${_dir}/logdir"
|
||||
if [ -d ${_dir} ]; then
|
||||
echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
|
||||
exit 0
|
||||
fi
|
||||
mkdir -p "${_logdir}"
|
||||
_data="${feats_dir}/${dumpdir}/${dset}"
|
||||
key_file=${_data}/${scp}
|
||||
num_scp_file="$(<${key_file} wc -l)"
|
||||
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
|
||||
split_scps=
|
||||
for n in $(seq "${_nj}"); do
|
||||
split_scps+=" ${_logdir}/keys.${n}.scp"
|
||||
done
|
||||
# shellcheck disable=SC2086
|
||||
utils/split_scp.pl "${key_file}" ${split_scps}
|
||||
_opts=
|
||||
if [ -n "${inference_config}" ]; then
|
||||
_opts+="--config ${inference_config} "
|
||||
fi
|
||||
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1: "${_nj}" "${_logdir}"/asr_inference.JOB.log \
|
||||
python -m funasr.bin.asr_inference_launch \
|
||||
--batch_size 1 \
|
||||
--ngpu "${_ngpu}" \
|
||||
--njob ${njob} \
|
||||
--gpuid_list ${gpuid_list} \
|
||||
--data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
|
||||
--key_file "${_logdir}"/keys.JOB.scp \
|
||||
--asr_train_config "${asr_exp}"/config.yaml \
|
||||
--asr_model_file "${asr_exp}"/"${inference_asr_model}" \
|
||||
--output_dir "${_logdir}"/output.JOB \
|
||||
--mode asr \
|
||||
${_opts}
|
||||
|
||||
for f in token token_int score text; do
|
||||
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
|
||||
for i in $(seq "${_nj}"); do
|
||||
cat "${_logdir}/output.${i}/1best_recog/${f}"
|
||||
done | sort -k1 >"${_dir}/${f}"
|
||||
fi
|
||||
done
|
||||
python utils/proce_text.py ${_dir}/text ${_dir}/text.proc
|
||||
python utils/proce_text.py ${_data}/text ${_data}/text.proc
|
||||
python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
|
||||
tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
|
||||
cat ${_dir}/text.cer.txt
|
||||
done
|
||||
fi
|
||||
|
||||
5
egs/mars/sd/path.sh
Executable file
5
egs/mars/sd/path.sh
Executable file
@ -0,0 +1,5 @@
|
||||
export FUNASR_DIR=$PWD/../../..
|
||||
|
||||
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PATH=$FUNASR_DIR/funasr/bin:$PATH
|
||||
45
egs/mars/sd/scripts/calculate_shapes.py
Normal file
45
egs/mars/sd/scripts/calculate_shapes.py
Normal file
@ -0,0 +1,45 @@
|
||||
import logging
|
||||
import numpy as np
|
||||
import soundfile
|
||||
import kaldiio
|
||||
from funasr.utils.job_runner import MultiProcessRunnerV3
|
||||
from funasr.utils.misc import load_scp_as_list, load_scp_as_dict
|
||||
import os
|
||||
import argparse
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class MyRunner(MultiProcessRunnerV3):
|
||||
|
||||
def prepare(self, parser: argparse.ArgumentParser):
|
||||
parser.add_argument("--input_scp", type=str, required=True)
|
||||
parser.add_argument("--out_path")
|
||||
args = parser.parse_args()
|
||||
|
||||
if not os.path.exists(os.path.dirname(args.out_path)):
|
||||
os.makedirs(os.path.dirname(args.out_path))
|
||||
|
||||
task_list = load_scp_as_list(args.input_scp)
|
||||
return task_list, None, args
|
||||
|
||||
def post(self, result_list, args):
|
||||
fd = open(args.out_path, "wt", encoding="utf-8")
|
||||
for results in result_list:
|
||||
for uttid, shape in results:
|
||||
fd.write("{} {}\n".format(uttid, ",".join(shape)))
|
||||
fd.close()
|
||||
|
||||
|
||||
def process(task_args):
|
||||
task_idx, task_list, _, args = task_args
|
||||
rst = []
|
||||
for uttid, file_path in task_list:
|
||||
data = kaldiio.load_mat(file_path)
|
||||
shape = [str(x) for x in data.shape]
|
||||
rst.append((uttid, shape))
|
||||
return rst
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
my_runner = MyRunner(process)
|
||||
my_runner.run()
|
||||
@ -90,6 +90,7 @@ class DiarSondModel(AbsESPnetModel):
|
||||
self.int_token_arr = torch.from_numpy(np.array(self.token_list).astype(int)[np.newaxis, np.newaxis, :])
|
||||
self.speaker_discrimination_loss_weight = speaker_discrimination_loss_weight
|
||||
self.inter_score_loss_weight = inter_score_loss_weight
|
||||
self.forward_steps = 0
|
||||
|
||||
def generate_pse_embedding(self):
|
||||
embedding = np.zeros((len(self.token_list), self.max_spk_num), dtype=np.float)
|
||||
@ -123,7 +124,7 @@ class DiarSondModel(AbsESPnetModel):
|
||||
"""
|
||||
assert speech.shape[0] == binary_labels.shape[0], (speech.shape, binary_labels.shape)
|
||||
batch_size = speech.shape[0]
|
||||
|
||||
self.forward_steps = self.forward_steps + 1
|
||||
# 1. Network forward
|
||||
pred, inter_outputs = self.prediction_forward(
|
||||
speech, speech_lengths,
|
||||
@ -198,6 +199,7 @@ class DiarSondModel(AbsESPnetModel):
|
||||
cf=cf,
|
||||
acc=acc,
|
||||
der=der,
|
||||
forward_steps=self.forward_steps,
|
||||
)
|
||||
|
||||
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
||||
@ -262,8 +264,10 @@ class DiarSondModel(AbsESPnetModel):
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
spk_labels: torch.Tensor = None,
|
||||
spk_labels_lengths: torch.Tensor = None,
|
||||
profile: torch.Tensor = None,
|
||||
profile_lengths: torch.Tensor = None,
|
||||
binary_labels: torch.Tensor = None,
|
||||
binary_labels_lengths: torch.Tensor = None,
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||||
return {"feats": feats, "feats_lengths": feats_lengths}
|
||||
|
||||
@ -528,8 +528,6 @@ class ECAPA_TDNN(torch.nn.Module):
|
||||
|
||||
Arguments
|
||||
---------
|
||||
device : str
|
||||
Device used, e.g., "cpu" or "cuda".
|
||||
activation : torch class
|
||||
A class for constructing the activation layers.
|
||||
channels : list of ints
|
||||
@ -555,7 +553,6 @@ class ECAPA_TDNN(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_size,
|
||||
device="cpu",
|
||||
lin_neurons=192,
|
||||
activation=torch.nn.ReLU,
|
||||
channels=[512, 512, 512, 512, 1536],
|
||||
|
||||
@ -24,6 +24,7 @@ from funasr.layers.utterance_mvn import UtteranceMVN
|
||||
from funasr.layers.label_aggregation import LabelAggregate
|
||||
from funasr.models.ctc import CTC
|
||||
from funasr.models.encoder.resnet34_encoder import ResNet34Diar
|
||||
from funasr.models.encoder.ecapa_tdnn_encoder import ECAPA_TDNN
|
||||
from funasr.models.encoder.opennmt_encoders.conv_encoder import ConvEncoder
|
||||
from funasr.models.encoder.opennmt_encoders.fsmn_encoder import FsmnEncoder
|
||||
from funasr.models.encoder.opennmt_encoders.self_attention_encoder import SelfAttentionEncoder
|
||||
@ -123,6 +124,7 @@ encoder_choices = ClassChoices(
|
||||
resnet34=ResNet34Diar,
|
||||
sanm_chunk_opt=SANMEncoderChunkOpt,
|
||||
data2vec_encoder=Data2VecEncoder,
|
||||
epaca_dtnn=ECAPA_TDNN,
|
||||
),
|
||||
type_check=AbsEncoder,
|
||||
default="resnet34",
|
||||
|
||||
Loading…
Reference in New Issue
Block a user