mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Dev cmz (#1244)
* fix offline mode split text in the asr pipeline * simplify code in split_word --------- Co-authored-by: mengzhe.cmz <mengzhe.cmz@alibaba-inc.com>
This commit is contained in:
parent
c7c97cb0fe
commit
08f7eaff95
@ -705,55 +705,73 @@ class CodeMixTokenizerCommonPreprocessor(CommonPreprocessor):
|
||||
return line
|
||||
|
||||
@classmethod
|
||||
def split_words_jieba(cls, text: str):
|
||||
input_list = text.split()
|
||||
token_list_all = []
|
||||
langauge_list = []
|
||||
token_list_tmp = []
|
||||
language_flag = None
|
||||
for token in input_list:
|
||||
if cls.isEnglish(token) and language_flag == 'Chinese':
|
||||
def split_words(cls, text: str , seg_jieba: bool):
|
||||
if seg_jieba == True:
|
||||
input_list = text.split()
|
||||
token_list_all = []
|
||||
langauge_list = []
|
||||
token_list_tmp = []
|
||||
language_flag = None
|
||||
for token in input_list:
|
||||
if cls.isEnglish(token) and language_flag == 'Chinese':
|
||||
token_list_all.append(token_list_tmp)
|
||||
langauge_list.append('Chinese')
|
||||
token_list_tmp = []
|
||||
elif not cls.isEnglish(token) and language_flag == 'English':
|
||||
token_list_all.append(token_list_tmp)
|
||||
langauge_list.append('English')
|
||||
token_list_tmp = []
|
||||
|
||||
token_list_tmp.append(token)
|
||||
|
||||
if cls.isEnglish(token):
|
||||
language_flag = 'English'
|
||||
else:
|
||||
language_flag = 'Chinese'
|
||||
|
||||
if token_list_tmp:
|
||||
token_list_all.append(token_list_tmp)
|
||||
langauge_list.append('Chinese')
|
||||
token_list_tmp = []
|
||||
elif not cls.isEnglish(token) and language_flag == 'English':
|
||||
token_list_all.append(token_list_tmp)
|
||||
langauge_list.append('English')
|
||||
token_list_tmp = []
|
||||
langauge_list.append(language_flag)
|
||||
|
||||
token_list_tmp.append(token)
|
||||
result_list = []
|
||||
for token_list_tmp, language_flag in zip(token_list_all, langauge_list):
|
||||
if language_flag == 'English':
|
||||
result_list.extend(token_list_tmp)
|
||||
else:
|
||||
seg_list = jieba.cut(cls.join_chinese_and_english(token_list_tmp), HMM=False)
|
||||
result_list.extend(seg_list)
|
||||
|
||||
if cls.isEnglish(token):
|
||||
language_flag = 'English'
|
||||
else:
|
||||
language_flag = 'Chinese'
|
||||
return result_list
|
||||
|
||||
if token_list_tmp:
|
||||
token_list_all.append(token_list_tmp)
|
||||
langauge_list.append(language_flag)
|
||||
else:
|
||||
words = []
|
||||
segs = text.split()
|
||||
for seg in segs:
|
||||
# There is no space in seg.
|
||||
current_word = ""
|
||||
for c in seg:
|
||||
if len(c.encode()) == 1:
|
||||
# This is an ASCII char.
|
||||
current_word += c
|
||||
else:
|
||||
# This is a Chinese char.
|
||||
if len(current_word) > 0:
|
||||
words.append(current_word)
|
||||
current_word = ""
|
||||
words.append(c)
|
||||
if len(current_word) > 0:
|
||||
words.append(current_word)
|
||||
return words
|
||||
|
||||
result_list = []
|
||||
for token_list_tmp, language_flag in zip(token_list_all, langauge_list):
|
||||
if language_flag == 'English':
|
||||
result_list.extend(token_list_tmp)
|
||||
else:
|
||||
seg_list = jieba.cut(cls.join_chinese_and_english(token_list_tmp), HMM=False)
|
||||
result_list.extend(seg_list)
|
||||
|
||||
return result_list
|
||||
|
||||
def __call__(
|
||||
self, uid: str, data: Dict[str, Union[list, str, np.ndarray]]
|
||||
) -> Dict[str, Union[list, np.ndarray]]:
|
||||
# Split words.
|
||||
if isinstance(data[self.text_name], str):
|
||||
if self.seg_jieba:
|
||||
# jieba.load_userdict(seg_dict_file)
|
||||
split_text = self.split_words_jieba(data[self.text_name])
|
||||
else:
|
||||
split_text = self.split_words(data[self.text_name])
|
||||
else:
|
||||
split_text = data[self.text_name]
|
||||
data_in = data[self.text_name]
|
||||
if isinstance(data[self.text_name], list):
|
||||
data_in = " ".join(data[self.text_name])
|
||||
split_text = self.split_words(data_in, self.seg_jieba)
|
||||
data[self.text_name] = " ".join(split_text)
|
||||
data = self._speech_process(data)
|
||||
data = self._text_process(data)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user