diff --git a/.github/workflows/UnitTest.yml b/.github/workflows/UnitTest.yml index d9d778447..3b0a1ee2e 100644 --- a/.github/workflows/UnitTest.yml +++ b/.github/workflows/UnitTest.yml @@ -6,7 +6,7 @@ on: - main push: branches: - - dev_wjm2 + - dev_wjm - dev_jy jobs: diff --git a/egs/librispeech/conformer/conf/train_asr_conformer.yaml b/egs/librispeech/conformer/conf/train_asr_conformer.yaml index 68b127fe5..2bd3db448 100644 --- a/egs/librispeech/conformer/conf/train_asr_conformer.yaml +++ b/egs/librispeech/conformer/conf/train_asr_conformer.yaml @@ -27,13 +27,25 @@ decoder_conf: self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 +# frontend related +frontend: wav_frontend +frontend_conf: + fs: 16000 + window: hamming + n_mels: 80 + frame_length: 25 + frame_shift: 10 + lfr_m: 1 + lfr_n: 1 + +# hybrid CTC/attention model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false accum_grad: 2 -max_epoch: 50 +max_epoch: 150 patience: none init: none best_model_criterion: diff --git a/egs/librispeech/conformer/run.sh b/egs/librispeech/conformer/run.sh index 93d1b463d..b266ea571 100755 --- a/egs/librispeech/conformer/run.sh +++ b/egs/librispeech/conformer/run.sh @@ -16,30 +16,26 @@ infer_cmd=utils/run.pl feats_dir="../DATA" #feature output dictionary exp_dir="." lang=en -dumpdir=dump/fbank -feats_type=fbank token_type=bpe -dataset_type=large -scp=feats.scp -type=kaldi_ark -stage=3 -stop_stage=4 +type=sound +scp=wav.scp +stage=0 +stop_stage=2 # feature configuration feats_dim=80 -sample_frequency=16000 -nj=100 -speed_perturb="0.9,1.0,1.1" +nj=64 # data -data_librispeech= +raw_data= +data_url=www.openslr.org/resources/12 # bpe model nbpe=5000 bpemode=unigram # exp tag -tag="" +tag="exp1" . utils/parse_options.sh || exit 1; @@ -54,8 +50,7 @@ valid_set=dev test_sets="test_clean test_other dev_clean dev_other" asr_config=conf/train_asr_conformer.yaml -#asr_config=conf/train_asr_conformer_uttnorm.yaml -model_dir="baseline_$(basename "${asr_config}" .yaml)_${feats_type}_${lang}_${token_type}_${tag}" +model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}" inference_config=conf/decode_asr_transformer.yaml #inference_config=conf/decode_asr_transformer_beam60_ctc0.3.yaml @@ -73,97 +68,53 @@ else _ngpu=0 fi -if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then - echo "stage 0: Data preparation" - # Data preparation - for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do - local/data_prep_librispeech.sh ${data_librispeech}/LibriSpeech/${x} ${feats_dir}/data/${x//-/_} + +if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then + echo "stage -1: Data Download" + for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do + local/download_and_untar.sh ${raw_data} ${data_url} ${part} done fi -feat_train_dir=${feats_dir}/${dumpdir}/$train_set; mkdir -p ${feat_train_dir} -feat_dev_clean_dir=${feats_dir}/${dumpdir}/dev_clean; mkdir -p ${feat_dev_clean_dir} -feat_dev_other_dir=${feats_dir}/${dumpdir}/dev_other; mkdir -p ${feat_dev_other_dir} -feat_test_clean_dir=${feats_dir}/${dumpdir}/test_clean; mkdir -p ${feat_test_clean_dir} -feat_test_other_dir=${feats_dir}/${dumpdir}/test_other; mkdir -p ${feat_test_other_dir} -feat_dev_dir=${feats_dir}/${dumpdir}/$valid_set; mkdir -p ${feat_dev_dir} -if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then - echo "stage 1: Feature Generation" - # compute fbank features - fbankdir=${feats_dir}/fbank - for x in dev_clean dev_other test_clean test_other; do - utils/compute_fbank.sh --cmd "$train_cmd" --nj 1 --max_lengths 3000 --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \ - ${feats_dir}/data/${x} ${exp_dir}/exp/make_fbank/${x} ${fbankdir}/${x} - utils/fix_data_feat.sh ${fbankdir}/${x} +if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then + echo "stage 0: Data preparation" + # Data preparation + for x in dev-clean dev-other test-clean test-other train-clean-100 train-clean-360 train-other-500; do + local/data_prep.sh ${raw_data}/LibriSpeech/${x} ${feats_dir}/data/${x//-/_} done - - mkdir ${feats_dir}/data/$train_set + mkdir $feats_dir/data/$valid_set + dev_sets="dev_clean dev_other" + for file in wav.scp text; do + ( for f in $dev_sets; do cat $feats_dir/data/$f/$file; done ) | sort -k1 > $feats_dir/data/$valid_set/$file || exit 1; + done + mkdir $feats_dir/data/$train_set train_sets="train_clean_100 train_clean_360 train_other_500" for file in wav.scp text; do ( for f in $train_sets; do cat $feats_dir/data/$f/$file; done ) | sort -k1 > $feats_dir/data/$train_set/$file || exit 1; done - utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --max_lengths 3000 --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} --speed_perturb ${speed_perturb} \ - ${feats_dir}/data/$train_set ${exp_dir}/exp/make_fbank/$train_set ${fbankdir}/$train_set - utils/fix_data_feat.sh ${fbankdir}/$train_set - - # compute global cmvn - utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} \ - ${fbankdir}/$train_set ${exp_dir}/exp/make_fbank/$train_set - - # apply cmvn - utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \ - ${fbankdir}/$train_set ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/$train_set ${feat_train_dir} - utils/apply_cmvn.sh --cmd "$train_cmd" --nj 1 \ - ${fbankdir}/dev_clean ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/dev_clean ${feat_dev_clean_dir} - utils/apply_cmvn.sh --cmd "$train_cmd" --nj 1\ - ${fbankdir}/dev_other ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/dev_other ${feat_dev_other_dir} - utils/apply_cmvn.sh --cmd "$train_cmd" --nj 1 \ - ${fbankdir}/test_clean ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/test_clean ${feat_test_clean_dir} - utils/apply_cmvn.sh --cmd "$train_cmd" --nj 1 \ - ${fbankdir}/test_other ${fbankdir}/$train_set/cmvn.json ${exp_dir}/exp/make_fbank/test_other ${feat_test_other_dir} - - cp ${fbankdir}/$train_set/text ${fbankdir}/$train_set/speech_shape ${fbankdir}/$train_set/text_shape ${feat_train_dir} - cp ${fbankdir}/dev_clean/text ${fbankdir}/dev_clean/speech_shape ${fbankdir}/dev_clean/text_shape ${feat_dev_clean_dir} - cp ${fbankdir}/dev_other/text ${fbankdir}/dev_other/speech_shape ${fbankdir}/dev_other/text_shape ${feat_dev_other_dir} - cp ${fbankdir}/test_clean/text ${fbankdir}/test_clean/speech_shape ${fbankdir}/test_clean/text_shape ${feat_test_clean_dir} - cp ${fbankdir}/test_other/text ${fbankdir}/test_other/speech_shape ${fbankdir}/test_other/text_shape ${feat_test_other_dir} - - dev_sets="dev_clean dev_other" - for file in feats.scp text speech_shape text_shape; do - ( for f in $dev_sets; do cat $feats_dir/${dumpdir}/$f/$file; done ) | sort -k1 > $feat_dev_dir/$file || exit 1; - done - - #generate ark list - utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_train_dir} ${fbankdir}/${train_set} ${feat_train_dir} - utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_dev_dir} ${fbankdir}/${valid_set} ${feat_dev_dir} fi -dict=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt +if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then + echo "stage 1: Feature and CMVN Generation" + utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} ${feats_dir}/data/${train_set} +fi + +token_list=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt bpemodel=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe} -echo "dictionary: ${dict}" +echo "dictionary: ${token_list}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then ### Task dependent. You have to check non-linguistic symbols used in the corpus. echo "stage 2: Dictionary and Json Data Preparation" mkdir -p ${feats_dir}/data/lang_char/ - echo "" > ${dict} - echo "" >> ${dict} - echo "" >> ${dict} + echo "" > ${token_list} + echo "" >> ${token_list} + echo "" >> ${token_list} cut -f 2- -d" " ${feats_dir}/data/${train_set}/text > ${feats_dir}/data/lang_char/input.txt - spm_train --input=${feats_dir}/data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000 - spm_encode --model=${bpemodel}.model --output_format=piece < ${feats_dir}/data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0}' >> ${dict} - echo "" >> ${dict} - wc -l ${dict} - - vocab_size=$(cat ${dict} | wc -l) - awk -v v=,${vocab_size} '{print $0v}' ${feat_train_dir}/text_shape > ${feat_train_dir}/text_shape.char - awk -v v=,${vocab_size} '{print $0v}' ${feat_dev_dir}/text_shape > ${feat_dev_dir}/text_shape.char - mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/$train_set - mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/$valid_set - cp ${feat_train_dir}/speech_shape ${feat_train_dir}/text_shape ${feat_train_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/$train_set - cp ${feat_dev_dir}/speech_shape ${feat_dev_dir}/text_shape ${feat_dev_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/$valid_set + local/spm_train.py --input=${feats_dir}/data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000 + local/spm_encode.py --model=${bpemodel}.model --output_format=piece < ${feats_dir}/data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0}' >> ${token_list} + echo "" >> ${token_list} fi - # Training Stage world_size=$gpu_num # run on one machine if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then @@ -181,20 +132,20 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then rank=$i local_rank=$i gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) - asr_train.py \ + train.py \ + --task_name asr \ --gpu_id $gpu_id \ --use_preprocessor true \ --split_with_space false \ --bpemodel ${bpemodel}.model \ --token_type $token_type \ - --dataset_type $dataset_type \ - --token_list $dict \ - --train_data_file $feats_dir/$dumpdir/${train_set}/ark_txt.scp \ - --valid_data_file $feats_dir/$dumpdir/${valid_set}/ark_txt.scp \ + --token_list $token_list \ + --data_dir ${feats_dir}/data \ + --train_set ${train_set} \ + --valid_set ${valid_set} \ --resume true \ --output_dir ${exp_dir}/exp/${model_dir} \ --config $asr_config \ - --input_size $feats_dim \ --ngpu $gpu_num \ --num_worker_count $count \ --multiprocessing_distributed true \ @@ -220,7 +171,7 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then exit 0 fi mkdir -p "${_logdir}" - _data="${feats_dir}/${dumpdir}/${dset}" + _data="${feats_dir}/data/${dset}" key_file=${_data}/${scp} num_scp_file="$(<${key_file} wc -l)" _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file") @@ -241,6 +192,7 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then --njob ${njob} \ --gpuid_list ${gpuid_list} \ --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \ + --cmvn_file ${feats_dir}/data/${train_set}/cmvn/cmvn.mvn \ --key_file "${_logdir}"/keys.JOB.scp \ --asr_train_config "${asr_exp}"/config.yaml \ --asr_model_file "${asr_exp}"/"${inference_asr_model}" \ diff --git a/egs/librispeech_100h/conformer/run.sh b/egs/librispeech_100h/conformer/run.sh index bca1ed8e7..4959ba069 100755 --- a/egs/librispeech_100h/conformer/run.sh +++ b/egs/librispeech_100h/conformer/run.sh @@ -166,7 +166,7 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then exit 0 fi mkdir -p "${_logdir}" - _data="${feats_dir}/${dumpdir}/${dset}" + _data="${feats_dir}/data/${dset}" key_file=${_data}/${scp} num_scp_file="$(<${key_file} wc -l)" _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")