mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
add itn_pipeline.md
This commit is contained in:
parent
e06317e9d0
commit
04c74dabf5
@ -30,17 +30,17 @@ rec_result = inference_pipeline(text_in='https://isv-data.oss-cn-hangzhou.aliyun
|
|||||||
|
|
||||||
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing/inverse_text_normalization)
|
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing/inverse_text_normalization)
|
||||||
|
|
||||||
#### Modify Your Own ITN Model
|
### Modify Your Own ITN Model
|
||||||
The rule-based ITN code is open-sourced in [FunTextProcessing](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing), users can modify by their own grammar rules. After modify the rules, the users can export their own ITN models in local directory.
|
The rule-based ITN code is open-sourced in [FunTextProcessing](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing), users can modify by their own grammar rules. After modify the rules, the users can export their own ITN models in local directory.
|
||||||
|
|
||||||
##### Export ITN Model
|
### Export ITN Model
|
||||||
Use the code in FunASR to export ITN model. An example to export ITN model to local folder is shown as below.
|
Use the code in FunASR to export ITN model. An example to export ITN model to local folder is shown as below.
|
||||||
```shell
|
```shell
|
||||||
cd fun_text_processing/inverse_text_normalization/
|
cd fun_text_processing/inverse_text_normalization/
|
||||||
python export_models.py --language ja --export_dir ./itn_models/
|
python export_models.py --language ja --export_dir ./itn_models/
|
||||||
```
|
```
|
||||||
|
|
||||||
##### Evaluate ITN Model
|
### Evaluate ITN Model
|
||||||
Users can evaluate their own ITN model in local directory. Here is an example:
|
Users can evaluate their own ITN model in local directory. Here is an example:
|
||||||
```shell
|
```shell
|
||||||
python fun_text_processing/inverse_text_normalization/inverse_normalize.py --input_file ja_itn_example.txt --cache_dir ./itn_models/ --output_file output.txt --language=ja
|
python fun_text_processing/inverse_text_normalization/inverse_normalize.py --input_file ja_itn_example.txt --cache_dir ./itn_models/ --output_file output.txt --language=ja
|
||||||
@ -58,13 +58,4 @@ python fun_text_processing/inverse_text_normalization/inverse_normalize.py --inp
|
|||||||
- text bytes, `e.g.`: "一九九九年に誕生した同商品にちなみ、約三十年前、二十四歳の頃の幸四郎の写真を公開。"
|
- text bytes, `e.g.`: "一九九九年に誕生した同商品にちなみ、約三十年前、二十四歳の頃の幸四郎の写真を公開。"
|
||||||
- text file, `e.g.`: https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/ja_itn_example.txt
|
- text file, `e.g.`: https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/ja_itn_example.txt
|
||||||
In this case of `text file` input, `output_dir` must be set to save the output results
|
In this case of `text file` input, `output_dir` must be set to save the output results
|
||||||
|
|
||||||
|
|
||||||
## Finetune with pipeline
|
|
||||||
|
|
||||||
### Quick start
|
|
||||||
|
|
||||||
### Finetune with your data
|
|
||||||
|
|
||||||
## Inference with your finetuned model
|
|
||||||
|
|
||||||
Loading…
Reference in New Issue
Block a user