add itn_pipeline.md

This commit is contained in:
chong.zhang 2023-05-05 16:29:05 +08:00
parent e06317e9d0
commit 04c74dabf5

View File

@ -30,17 +30,17 @@ rec_result = inference_pipeline(text_in='https://isv-data.oss-cn-hangzhou.aliyun
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing/inverse_text_normalization)
#### Modify Your Own ITN Model
### Modify Your Own ITN Model
The rule-based ITN code is open-sourced in [FunTextProcessing](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing), users can modify by their own grammar rules. After modify the rules, the users can export their own ITN models in local directory.
##### Export ITN Model
### Export ITN Model
Use the code in FunASR to export ITN model. An example to export ITN model to local folder is shown as below.
```shell
cd fun_text_processing/inverse_text_normalization/
python export_models.py --language ja --export_dir ./itn_models/
```
##### Evaluate ITN Model
### Evaluate ITN Model
Users can evaluate their own ITN model in local directory. Here is an example:
```shell
python fun_text_processing/inverse_text_normalization/inverse_normalize.py --input_file ja_itn_example.txt --cache_dir ./itn_models/ --output_file output.txt --language=ja
@ -58,13 +58,4 @@ python fun_text_processing/inverse_text_normalization/inverse_normalize.py --inp
- text bytes, `e.g.`: "一九九九年に誕生した同商品にちなみ、約三十年前、二十四歳の頃の幸四郎の写真を公開。"
- text file, `e.g.`: https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/ja_itn_example.txt
In this case of `text file` input, `output_dir` must be set to save the output results
## Finetune with pipeline
### Quick start
### Finetune with your data
## Inference with your finetuned model