# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # Builds GitHub actions CI runner image for deployment to DockerHub https://hub.docker.com/r/ultralytics/ultralytics # Image is CUDA-optimized for YOLO single/multi-GPU training and inference tests # Start FROM Ultralytics GPU image FROM ultralytics/ultralytics:latest # Set additional environment variables for runner ARG RUNNER_VERSION=2.328.0 ENV RUNNER_ALLOW_RUNASROOT=1 \ DEBIAN_FRONTEND=noninteractive # Set the working directory WORKDIR /actions-runner # Download and unpack the latest runner from https://github.com/actions/runner and install dependencies RUN FILENAME=actions-runner-linux-x64-${RUNNER_VERSION}.tar.gz && \ curl -o "$FILENAME" -L "https://github.com/actions/runner/releases/download/v${RUNNER_VERSION}/${FILENAME}" && \ tar xzf "$FILENAME" && \ rm "$FILENAME" && \ # Install runner dependencies \ uv pip install --system pytest-cov && \ ./bin/installdependencies.sh && \ apt-get -y install libicu-dev # JSON ENTRYPOINT command to configure and start runner with default TOKEN and NAME ENTRYPOINT ["sh", "-c", "./config.sh --url https://github.com/ultralytics/ultralytics --token ${GITHUB_RUNNER_TOKEN:-TOKEN} --name ${GITHUB_RUNNER_NAME:-NAME} --labels gpu-latest --replace && ./run.sh"] # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/ultralytics:latest-runner && sudo docker build -f docker/Dockerfile-runner -t $t . && sudo docker push $t # Pull and Run in detached mode with access to GPUs 0 and 1 # t=ultralytics/ultralytics:latest-runner && sudo docker run -d -e GITHUB_RUNNER_TOKEN=TOKEN -e GITHUB_RUNNER_NAME=NAME --ipc=host --gpus '"device=0,1"' $t