mirror of
https://github.com/ultralytics/ultralytics.git
synced 2025-09-15 15:48:41 +08:00
Fix SAM2DynamicInteractivePredictor example in docs (#21955)
Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
parent
e843b4c713
commit
d61006647b
@ -260,7 +260,7 @@ It offers three significant enhancements:
|
||||
predictor = SAM2DynamicInteractivePredictor(overrides=overrides, max_obj_num=10)
|
||||
|
||||
# Define a category by box prompt
|
||||
predictor.inference(img="image1.jpg", bboxes=[[100, 100, 200, 200]], obj_ids=[1], update_memory=True)
|
||||
predictor(source="image1.jpg", bboxes=[[100, 100, 200, 200]], obj_ids=[1], update_memory=True)
|
||||
|
||||
# Detect this particular object in a new image
|
||||
results = predictor(source="image2.jpg")
|
||||
@ -273,7 +273,7 @@ It offers three significant enhancements:
|
||||
update_memory=True, # Add to memory
|
||||
)
|
||||
# Perform inference
|
||||
results = predictor.inference(img="image5.jpg")
|
||||
results = predictor(source="image5.jpg")
|
||||
|
||||
# Add refinement prompts to the same category to boost performance
|
||||
# This helps when object appearance changes significantly
|
||||
|
||||
@ -1761,7 +1761,7 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
||||
@smart_inference_mode()
|
||||
def inference(
|
||||
self,
|
||||
img: torch.Tensor | np.ndarray,
|
||||
im: torch.Tensor | np.ndarray,
|
||||
bboxes: list[list[float]] | None = None,
|
||||
masks: torch.Tensor | np.ndarray | None = None,
|
||||
points: list[list[float]] | None = None,
|
||||
@ -1777,7 +1777,7 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
||||
When update_memory is False, it will only run inference on the provided image without updating the memory.
|
||||
|
||||
Args:
|
||||
img (torch.Tensor | np.ndarray): The input image tensor or numpy array.
|
||||
im (torch.Tensor | np.ndarray): The input image tensor or numpy array.
|
||||
bboxes (List[List[float]] | None): Optional list of bounding boxes to update the memory.
|
||||
masks (List[torch.Tensor | np.ndarray] | None): Optional masks to update the memory.
|
||||
points (List[List[float]] | None): Optional list of points to update the memory, each point is [x, y].
|
||||
@ -1789,7 +1789,7 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
||||
res_masks (torch.Tensor): The output masks in shape (C, H, W)
|
||||
object_score_logits (torch.Tensor): Quality scores for each mask
|
||||
"""
|
||||
self.get_im_features(img)
|
||||
self.get_im_features(im)
|
||||
points, labels, masks = self._prepare_prompts(
|
||||
dst_shape=self.imgsz,
|
||||
src_shape=self.batch[1][0].shape[:2],
|
||||
|
||||
Loading…
Reference in New Issue
Block a user