mirror of
https://github.com/ultralytics/ultralytics.git
synced 2025-09-15 15:48:41 +08:00
Update FastSAM and SAM docs (#14499)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
81544c6d71
commit
c87600037d
@ -81,19 +81,19 @@ To perform object detection on an image, use the `predict` method as shown below
|
||||
prompt_process = FastSAMPrompt(source, everything_results, device="cpu")
|
||||
|
||||
# Everything prompt
|
||||
ann = prompt_process.everything_prompt()
|
||||
results = prompt_process.everything_prompt()
|
||||
|
||||
# Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
|
||||
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
|
||||
results = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
|
||||
|
||||
# Text prompt
|
||||
ann = prompt_process.text_prompt(text="a photo of a dog")
|
||||
results = prompt_process.text_prompt(text="a photo of a dog")
|
||||
|
||||
# Point prompt
|
||||
# points default [[0,0]] [[x1,y1],[x2,y2]]
|
||||
# point_label default [0] [1,0] 0:background, 1:foreground
|
||||
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
|
||||
prompt_process.plot(annotations=ann, output="./")
|
||||
results = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
|
||||
prompt_process.plot(annotations=results, output="./")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
@ -105,6 +105,10 @@ To perform object detection on an image, use the `predict` method as shown below
|
||||
|
||||
This snippet demonstrates the simplicity of loading a pre-trained model and running a prediction on an image.
|
||||
|
||||
!!! Note
|
||||
|
||||
All the returned `results` in above examples are [Results](../modes/predict.md#working-with-results) object which allows access predicted masks and source image easily.
|
||||
|
||||
### Val Usage
|
||||
|
||||
Validation of the model on a dataset can be done as follows:
|
||||
|
||||
@ -56,10 +56,10 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
|
||||
model.info()
|
||||
|
||||
# Run inference with bboxes prompt
|
||||
model("ultralytics/assets/zidane.jpg", bboxes=[439, 437, 524, 709])
|
||||
results = model("ultralytics/assets/zidane.jpg", bboxes=[439, 437, 524, 709])
|
||||
|
||||
# Run inference with points prompt
|
||||
model("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])
|
||||
results = model("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])
|
||||
```
|
||||
|
||||
!!! Example "Segment everything"
|
||||
@ -128,6 +128,10 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
|
||||
results = predictor(source="ultralytics/assets/zidane.jpg", crop_n_layers=1, points_stride=64)
|
||||
```
|
||||
|
||||
!!! Note
|
||||
|
||||
All the returned `results` in above examples are [Results](../modes/predict.md#working-with-results) object which allows access predicted masks and source image easily.
|
||||
|
||||
- More additional args for `Segment everything` see [`Predictor/generate` Reference](../reference/models/sam/predict.md).
|
||||
|
||||
## SAM comparison vs YOLOv8
|
||||
|
||||
Loading…
Reference in New Issue
Block a user