mirror of
https://github.com/ultralytics/ultralytics.git
synced 2025-09-15 15:48:41 +08:00
ultralytics 8.2.77 new color_mode=instance plot arg (#15034)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
b7c5db94b4
commit
265166ae4d
@ -720,6 +720,7 @@ The `plot()` method supports various arguments to customize the output:
|
||||
| `show` | `bool` | Display the annotated image directly using the default image viewer. | `False` |
|
||||
| `save` | `bool` | Save the annotated image to a file specified by `filename`. | `False` |
|
||||
| `filename` | `str` | Path and name of the file to save the annotated image if `save` is `True`. | `None` |
|
||||
| `color_mode` | `str` | Specify the color mode, e.g., 'instance' or 'class'. | `'class'` |
|
||||
|
||||
## Thread-Safe Inference
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = "8.2.76"
|
||||
__version__ = "8.2.77"
|
||||
|
||||
import os
|
||||
|
||||
|
||||
@ -460,6 +460,7 @@ class Results(SimpleClass):
|
||||
show=False,
|
||||
save=False,
|
||||
filename=None,
|
||||
color_mode="class",
|
||||
):
|
||||
"""
|
||||
Plots detection results on an input RGB image.
|
||||
@ -481,6 +482,7 @@ class Results(SimpleClass):
|
||||
show (bool): Whether to display the annotated image.
|
||||
save (bool): Whether to save the annotated image.
|
||||
filename (str | None): Filename to save image if save is True.
|
||||
color_mode (bool): Specify the color mode, e.g., 'instance' or 'class'. Default to 'class'.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): Annotated image as a numpy array.
|
||||
@ -491,6 +493,7 @@ class Results(SimpleClass):
|
||||
... im = result.plot()
|
||||
... im.show()
|
||||
"""
|
||||
assert color_mode in {"instance", "class"}, f"Expected color_mode='instance' or 'class', not {color_mode}."
|
||||
if img is None and isinstance(self.orig_img, torch.Tensor):
|
||||
img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()
|
||||
|
||||
@ -519,17 +522,22 @@ class Results(SimpleClass):
|
||||
.contiguous()
|
||||
/ 255
|
||||
)
|
||||
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
|
||||
idx = pred_boxes.cls if pred_boxes and color_mode == "class" else reversed(range(len(pred_masks)))
|
||||
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)
|
||||
|
||||
# Plot Detect results
|
||||
if pred_boxes is not None and show_boxes:
|
||||
for d in reversed(pred_boxes):
|
||||
for i, d in enumerate(reversed(pred_boxes)):
|
||||
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
|
||||
name = ("" if id is None else f"id:{id} ") + names[c]
|
||||
label = (f"{name} {conf:.2f}" if conf else name) if labels else None
|
||||
box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
|
||||
annotator.box_label(box, label, color=colors(c, True), rotated=is_obb)
|
||||
annotator.box_label(
|
||||
box,
|
||||
label,
|
||||
color=colors(i if color_mode == "instance" else c, True),
|
||||
rotated=is_obb,
|
||||
)
|
||||
|
||||
# Plot Classify results
|
||||
if pred_probs is not None and show_probs:
|
||||
@ -539,8 +547,14 @@ class Results(SimpleClass):
|
||||
|
||||
# Plot Pose results
|
||||
if self.keypoints is not None:
|
||||
for k in reversed(self.keypoints.data):
|
||||
annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)
|
||||
for i, k in enumerate(reversed(self.keypoints.data)):
|
||||
annotator.kpts(
|
||||
k,
|
||||
self.orig_shape,
|
||||
radius=kpt_radius,
|
||||
kpt_line=kpt_line,
|
||||
kpt_color=colors(i, True) if color_mode == "instance" else None,
|
||||
)
|
||||
|
||||
# Show results
|
||||
if show:
|
||||
|
||||
@ -369,7 +369,7 @@ class Annotator:
|
||||
# Convert im back to PIL and update draw
|
||||
self.fromarray(self.im)
|
||||
|
||||
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True, conf_thres=0.25):
|
||||
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True, conf_thres=0.25, kpt_color=None):
|
||||
"""
|
||||
Plot keypoints on the image.
|
||||
|
||||
@ -379,6 +379,7 @@ class Annotator:
|
||||
radius (int, optional): Radius of the drawn keypoints. Default is 5.
|
||||
kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
|
||||
for human pose. Default is True.
|
||||
kpt_color (tuple, optional): The color of the keypoints (B, G, R).
|
||||
|
||||
Note:
|
||||
`kpt_line=True` currently only supports human pose plotting.
|
||||
@ -391,7 +392,7 @@ class Annotator:
|
||||
is_pose = nkpt == 17 and ndim in {2, 3}
|
||||
kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
|
||||
for i, k in enumerate(kpts):
|
||||
color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
|
||||
color_k = kpt_color or (self.kpt_color[i].tolist() if is_pose else colors(i))
|
||||
x_coord, y_coord = k[0], k[1]
|
||||
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
|
||||
if len(k) == 3:
|
||||
@ -414,7 +415,14 @@ class Annotator:
|
||||
continue
|
||||
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
|
||||
continue
|
||||
cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
|
||||
cv2.line(
|
||||
self.im,
|
||||
pos1,
|
||||
pos2,
|
||||
kpt_color or self.limb_color[i].tolist(),
|
||||
thickness=2,
|
||||
lineType=cv2.LINE_AA,
|
||||
)
|
||||
if self.pil:
|
||||
# Convert im back to PIL and update draw
|
||||
self.fromarray(self.im)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user