mirror of
https://github.com/ultralytics/ultralytics.git
synced 2025-09-15 15:48:41 +08:00
YOLO Vision 2024 updates https://ultralytics.com/events/yolovision (#15602)
Co-authored-by: Muhammad Rizwan Munawar <muhammadrizwanmunawar123@gmail.com>
This commit is contained in:
parent
be9fe124e3
commit
0635a40b98
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<p>
|
||||
<a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
|
||||
<a href="https://www.ultralytics.com/events/yolovision" target="_blank">
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
|
||||
</p>
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<p>
|
||||
<a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
|
||||
<a href="https://www.ultralytics.com/events/yolovision" target="_blank">
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
|
||||
</p>
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ keywords: Ultralytics, YOLOv8, object detection, image segmentation, deep learni
|
||||
---
|
||||
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank"><img width="1024%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
|
||||
<a href="https://www.ultralytics.com/events/yolovision" target="_blank"><img width="1024%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
|
||||
<a href="https://docs.ultralytics.com/zh/">中文</a> |
|
||||
<a href="https://docs.ultralytics.com/ko/">한국어</a> |
|
||||
<a href="https://docs.ultralytics.com/ja/">日本語</a> |
|
||||
|
||||
@ -84,9 +84,7 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
|
||||
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
|
||||
|
||||
# Run inference with bboxes and points and texts prompt at the same time
|
||||
results = sam_model(
|
||||
source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog"
|
||||
)
|
||||
sam_model(source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog")
|
||||
|
||||
|
||||
def test_mobilesam():
|
||||
|
||||
Loading…
Reference in New Issue
Block a user