mirror of
https://github.com/Zeyi-Lin/HivisionIDPhotos.git
synced 2025-09-15 14:58:34 +08:00
218 lines
10 KiB
Python
218 lines
10 KiB
Python
import gradio as gr
|
||
import onnxruntime
|
||
from face_judgement_align import IDphotos_create
|
||
from hivisionai.hycv.vision import add_background
|
||
from layoutCreate import generate_layout_photo, generate_layout_image
|
||
import pathlib
|
||
import numpy as np
|
||
|
||
size_list_dict = {"一寸": (413, 295), "二寸": (626, 413),
|
||
"教师资格证": (413, 295), "国家公务员考试": (413, 295), "初级会计考试": (413, 295)}
|
||
color_list_dict = {"蓝色": (86, 140, 212), "白色": (255, 255, 255), "红色": (233, 51, 35)}
|
||
|
||
|
||
# 设置Gradio examples
|
||
def set_example_image(example: list) -> dict:
|
||
return gr.Image.update(value=example[0])
|
||
|
||
|
||
# 检测RGB是否超出范围,如果超出则约束到0~255之间
|
||
def range_check(value, min_value=0, max_value=255):
|
||
value = int(value)
|
||
if value <= min_value:
|
||
value = min_value
|
||
elif value > max_value:
|
||
value = max_value
|
||
return value
|
||
|
||
|
||
def idphoto_inference(input_image,
|
||
mode_option,
|
||
size_list_option,
|
||
color_option,
|
||
render_option,
|
||
custom_color_R,
|
||
custom_color_G,
|
||
custom_color_B,
|
||
custom_size_height,
|
||
custom_size_width,
|
||
sess=None,
|
||
head_measure_ratio=0.2,
|
||
head_height_ratio=0.45,
|
||
top_distance_max=0.12,
|
||
top_distance_min=0.10):
|
||
|
||
idphoto_json = {
|
||
"size_mode": mode_option,
|
||
"color_mode": color_option,
|
||
"render_mode": render_option,
|
||
}
|
||
|
||
# 如果尺寸模式选择的是尺寸列表
|
||
if idphoto_json["size_mode"] == "尺寸列表":
|
||
idphoto_json["size"] = size_list_dict[size_list_option]
|
||
# 如果尺寸模式选择的是自定义尺寸
|
||
elif idphoto_json["size_mode"] == "自定义尺寸":
|
||
id_height = int(custom_size_height)
|
||
id_width = int(custom_size_width)
|
||
if id_height < id_width or min(id_height, id_width) < 100 or max(id_height, id_width) > 1800:
|
||
return {
|
||
img_output_standard: gr.update(value=None),
|
||
img_output_standard_hd: gr.update(value=None),
|
||
notification: gr.update(value="宽度应不大于长度;长宽不应小于100,大于1800", visible=True)}
|
||
idphoto_json["size"] = (id_height, id_width)
|
||
else:
|
||
idphoto_json["size"] = (None, None)
|
||
|
||
# 如果颜色模式选择的是自定义底色
|
||
if idphoto_json["color_mode"] == "自定义底色":
|
||
idphoto_json["color_bgr"] = (range_check(custom_color_R),
|
||
range_check(custom_color_G),
|
||
range_check(custom_color_B))
|
||
else:
|
||
idphoto_json["color_bgr"] = color_list_dict[color_option]
|
||
|
||
result_image_hd, result_image_standard, typography_arr, typography_rotate, \
|
||
_, _, _, _, status = IDphotos_create(input_image,
|
||
mode=idphoto_json["size_mode"],
|
||
size=idphoto_json["size"],
|
||
head_measure_ratio=head_measure_ratio,
|
||
head_height_ratio=head_height_ratio,
|
||
align=False,
|
||
beauty=False,
|
||
fd68=None,
|
||
human_sess=sess,
|
||
IS_DEBUG=False,
|
||
top_distance_max=top_distance_max,
|
||
top_distance_min=top_distance_min)
|
||
|
||
# 如果检测到人脸数量不等于1
|
||
if status == 0:
|
||
result_messgae = {
|
||
img_output_standard: gr.update(value=None),
|
||
img_output_standard_hd: gr.update(value=None),
|
||
notification: gr.update(value="人脸数量不等于1", visible=True)
|
||
}
|
||
|
||
# 如果检测到人脸数量等于1
|
||
else:
|
||
if idphoto_json["render_mode"] == "纯色":
|
||
result_image_standard = np.uint8(
|
||
add_background(result_image_standard, bgr=idphoto_json["color_bgr"]))
|
||
result_image_hd = np.uint8(add_background(result_image_hd, bgr=idphoto_json["color_bgr"]))
|
||
elif idphoto_json["render_mode"] == "上下渐变(白)":
|
||
result_image_standard = np.uint8(
|
||
add_background(result_image_standard, bgr=idphoto_json["color_bgr"], mode="updown_gradient"))
|
||
result_image_hd = np.uint8(
|
||
add_background(result_image_hd, bgr=idphoto_json["color_bgr"], mode="updown_gradient"))
|
||
else:
|
||
result_image_standard = np.uint8(
|
||
add_background(result_image_standard, bgr=idphoto_json["color_bgr"], mode="center_gradient"))
|
||
result_image_hd = np.uint8(
|
||
add_background(result_image_hd, bgr=idphoto_json["color_bgr"], mode="center_gradient"))
|
||
|
||
if idphoto_json["size_mode"] == "只换底":
|
||
result_layout_image = gr.update(visible=False)
|
||
else:
|
||
typography_arr, typography_rotate = generate_layout_photo(input_height=idphoto_json["size"][0],
|
||
input_width=idphoto_json["size"][1])
|
||
|
||
result_layout_image = generate_layout_image(result_image_standard, typography_arr,
|
||
typography_rotate,
|
||
height=idphoto_json["size"][0],
|
||
width=idphoto_json["size"][1])
|
||
|
||
result_messgae = {
|
||
img_output_standard: result_image_standard,
|
||
img_output_standard_hd: result_image_hd,
|
||
img_output_layout: result_layout_image,
|
||
notification: gr.update(visible=False)}
|
||
|
||
return result_messgae
|
||
|
||
|
||
if __name__ == "__main__":
|
||
HY_HUMAN_MATTING_WEIGHTS_PATH = "./hivision_modnet.onnx"
|
||
sess = onnxruntime.InferenceSession(HY_HUMAN_MATTING_WEIGHTS_PATH)
|
||
size_mode = ["尺寸列表", "只换底", "自定义尺寸"]
|
||
size_list = ["一寸", "二寸", "教师资格证", "国家公务员考试", "初级会计考试"]
|
||
colors = ["蓝色", "白色", "红色", "自定义底色"]
|
||
render = ["纯色", "上下渐变(白)", "中心渐变(白)"]
|
||
|
||
title = "<h1 id='title'>HivisionIDPhotos</h1>"
|
||
description = "<h3>😎6.20更新:新增尺寸选择列表</h3>"
|
||
css = '''
|
||
h1#title, h3 {
|
||
text-align: center;
|
||
}
|
||
'''
|
||
|
||
demo = gr.Blocks(css=css)
|
||
|
||
with demo:
|
||
gr.Markdown(title)
|
||
gr.Markdown(description)
|
||
with gr.Row():
|
||
with gr.Column():
|
||
img_input = gr.Image().style(height=350)
|
||
mode_options = gr.Radio(choices=size_mode, label="证件照尺寸选项", value="尺寸列表", elem_id="size")
|
||
# 预设尺寸下拉菜单
|
||
with gr.Row(visible=True) as size_list_row:
|
||
size_list_options = gr.Dropdown(choices=size_list, label="预设尺寸", value="一寸", elem_id="size_list")
|
||
|
||
with gr.Row(visible=False) as custom_size:
|
||
custom_size_height = gr.Number(value=413, label="height", interactive=True)
|
||
custom_size_wdith = gr.Number(value=295, label="width", interactive=True)
|
||
|
||
color_options = gr.Radio(choices=colors, label="背景色", value="蓝色", elem_id="color")
|
||
with gr.Row(visible=False) as custom_color:
|
||
custom_color_R = gr.Number(value=0, label="R", interactive=True)
|
||
custom_color_G = gr.Number(value=0, label="G", interactive=True)
|
||
custom_color_B = gr.Number(value=0, label="B", interactive=True)
|
||
|
||
render_options = gr.Radio(choices=render, label="渲染方式", value="纯色", elem_id="render")
|
||
|
||
img_but = gr.Button('开始制作')
|
||
# 案例图片
|
||
example_images = gr.Dataset(components=[img_input],
|
||
samples=[[path.as_posix()]
|
||
for path in sorted(pathlib.Path('images').rglob('*.jpg'))])
|
||
|
||
with gr.Column():
|
||
notification = gr.Text(label="状态", visible=False)
|
||
with gr.Row():
|
||
img_output_standard = gr.Image(label="标准照").style(height=350)
|
||
img_output_standard_hd = gr.Image(label="高清照").style(height=350)
|
||
img_output_layout = gr.Image(label="六寸排版照").style(height=350)
|
||
|
||
|
||
def change_color(colors):
|
||
if colors == "自定义底色":
|
||
return {custom_color: gr.update(visible=True)}
|
||
else:
|
||
return {custom_color: gr.update(visible=False)}
|
||
|
||
def change_size_mode(size_option_item):
|
||
if size_option_item == "自定义尺寸":
|
||
return {custom_size: gr.update(visible=True),
|
||
size_list_row: gr.update(visible=False)}
|
||
elif size_option_item == "只换底":
|
||
return {custom_size: gr.update(visible=False),
|
||
size_list_row: gr.update(visible=False)}
|
||
else:
|
||
return {custom_size: gr.update(visible=False),
|
||
size_list_row: gr.update(visible=True)}
|
||
|
||
color_options.input(change_color, inputs=[color_options], outputs=[custom_color])
|
||
mode_options.input(change_size_mode, inputs=[mode_options], outputs=[custom_size, size_list_row])
|
||
|
||
img_but.click(idphoto_inference,
|
||
inputs=[img_input, mode_options, size_list_options, color_options, render_options,
|
||
custom_color_R, custom_color_G, custom_color_B,
|
||
custom_size_height, custom_size_wdith],
|
||
outputs=[img_output_standard, img_output_standard_hd, img_output_layout, notification],
|
||
queue=True)
|
||
example_images.click(fn=set_example_image, inputs=[example_images], outputs=[img_input])
|
||
|
||
demo.launch(enable_queue=True)
|