mirror of
https://github.com/Zeyi-Lin/HivisionIDPhotos.git
synced 2025-09-15 14:58:34 +08:00
374 lines
12 KiB
Python
374 lines
12 KiB
Python
from fastapi import FastAPI, UploadFile, Form, File
|
||
from hivision import IDCreator
|
||
from hivision.error import FaceError
|
||
from hivision.creator.layout_calculator import (
|
||
generate_layout_array,
|
||
generate_layout_image,
|
||
)
|
||
from hivision.creator.choose_handler import choose_handler
|
||
from hivision.utils import (
|
||
add_background,
|
||
resize_image_to_kb,
|
||
bytes_2_base64,
|
||
base64_2_numpy,
|
||
hex_to_rgb,
|
||
add_watermark,
|
||
save_image_dpi_to_bytes,
|
||
)
|
||
import numpy as np
|
||
import cv2
|
||
from starlette.middleware.cors import CORSMiddleware
|
||
from starlette.formparsers import MultiPartParser
|
||
|
||
# 设置Starlette表单字段大小限制
|
||
MultiPartParser.max_part_size = 10 * 1024 * 1024 # 10MB
|
||
# 设置Starlette文件上传大小限制
|
||
MultiPartParser.max_file_size = 20 * 1024 * 1024 # 20MB
|
||
|
||
app = FastAPI()
|
||
creator = IDCreator()
|
||
|
||
# 添加 CORS 中间件 解决跨域问题
|
||
app.add_middleware(
|
||
CORSMiddleware,
|
||
allow_origins=["*"], # 允许的请求来源
|
||
allow_credentials=True, # 允许携带 Cookie
|
||
allow_methods=[
|
||
"*"
|
||
], # 允许的请求方法,例如:GET, POST 等,也可以指定 ["GET", "POST"]
|
||
allow_headers=["*"], # 允许的请求头,也可以指定具体的头部
|
||
)
|
||
|
||
|
||
# 证件照智能制作接口
|
||
@app.post("/idphoto")
|
||
async def idphoto_inference(
|
||
input_image: UploadFile = File(None),
|
||
input_image_base64: str = Form(None),
|
||
height: int = Form(413),
|
||
width: int = Form(295),
|
||
human_matting_model: str = Form("modnet_photographic_portrait_matting"),
|
||
face_detect_model: str = Form("mtcnn"),
|
||
hd: bool = Form(True),
|
||
dpi: int = Form(300),
|
||
face_align: bool = Form(False),
|
||
whitening_strength: int = Form(0),
|
||
head_measure_ratio: float = Form(0.2),
|
||
head_height_ratio: float = Form(0.45),
|
||
top_distance_max: float = Form(0.12),
|
||
top_distance_min: float = Form(0.10),
|
||
brightness_strength: float = Form(0),
|
||
contrast_strength: float = Form(0),
|
||
sharpen_strength: float = Form(0),
|
||
saturation_strength: float = Form(0),
|
||
):
|
||
# 如果传入了base64,则直接使用base64解码
|
||
if input_image_base64:
|
||
img = base64_2_numpy(input_image_base64)
|
||
# 否则使用上传的图片
|
||
else:
|
||
image_bytes = await input_image.read()
|
||
nparr = np.frombuffer(image_bytes, np.uint8)
|
||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||
# 将BGR转换为RGB
|
||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||
|
||
# ------------------- 选择抠图与人脸检测模型 -------------------
|
||
choose_handler(creator, human_matting_model, face_detect_model)
|
||
|
||
# 将字符串转为元组
|
||
size = (int(height), int(width))
|
||
try:
|
||
result = creator(
|
||
img,
|
||
size=size,
|
||
head_measure_ratio=head_measure_ratio,
|
||
head_height_ratio=head_height_ratio,
|
||
head_top_range=(top_distance_max, top_distance_min),
|
||
face_alignment=face_align,
|
||
whitening_strength=whitening_strength,
|
||
brightness_strength=brightness_strength,
|
||
contrast_strength=contrast_strength,
|
||
sharpen_strength=sharpen_strength,
|
||
saturation_strength=saturation_strength,
|
||
)
|
||
except FaceError:
|
||
result_message = {"status": False}
|
||
# 如果检测到人脸数量等于1, 则返回标准证和高清照结果(png 4通道图像)
|
||
else:
|
||
result_image_standard_bytes = save_image_dpi_to_bytes(result.standard, None, dpi)
|
||
|
||
result_message = {
|
||
"status": True,
|
||
"image_base64_standard": bytes_2_base64(result_image_standard_bytes),
|
||
}
|
||
|
||
# 如果hd为True, 则增加高清照结果(png 4通道图像)
|
||
if hd:
|
||
result_image_hd_bytes = save_image_dpi_to_bytes(result.hd, None, dpi)
|
||
result_message["image_base64_hd"] = bytes_2_base64(result_image_hd_bytes)
|
||
|
||
return result_message
|
||
|
||
|
||
# 人像抠图接口
|
||
@app.post("/human_matting")
|
||
async def human_matting_inference(
|
||
input_image: UploadFile = File(None),
|
||
input_image_base64: str = Form(None),
|
||
human_matting_model: str = Form("hivision_modnet"),
|
||
dpi: int = Form(300),
|
||
):
|
||
if input_image_base64:
|
||
img = base64_2_numpy(input_image_base64)
|
||
else:
|
||
image_bytes = await input_image.read()
|
||
nparr = np.frombuffer(image_bytes, np.uint8)
|
||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||
|
||
# ------------------- 选择抠图与人脸检测模型 -------------------
|
||
choose_handler(creator, human_matting_model, None)
|
||
|
||
try:
|
||
result = creator(
|
||
img,
|
||
change_bg_only=True,
|
||
)
|
||
except FaceError:
|
||
result_message = {"status": False}
|
||
|
||
else:
|
||
result_image_standard_bytes = save_image_dpi_to_bytes(cv2.cvtColor(result.standard, cv2.COLOR_RGBA2BGRA), None, dpi)
|
||
result_message = {
|
||
"status": True,
|
||
"image_base64": bytes_2_base64(result_image_standard_bytes),
|
||
}
|
||
return result_message
|
||
|
||
|
||
# 透明图像添加纯色背景接口
|
||
@app.post("/add_background")
|
||
async def photo_add_background(
|
||
input_image: UploadFile = File(None),
|
||
input_image_base64: str = Form(None),
|
||
color: str = Form("000000"),
|
||
kb: int = Form(None),
|
||
dpi: int = Form(300),
|
||
render: int = Form(0),
|
||
):
|
||
render_choice = ["pure_color", "updown_gradient", "center_gradient"]
|
||
|
||
if input_image_base64:
|
||
img = base64_2_numpy(input_image_base64)
|
||
else:
|
||
image_bytes = await input_image.read()
|
||
nparr = np.frombuffer(image_bytes, np.uint8)
|
||
img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
|
||
|
||
color = hex_to_rgb(color)
|
||
color = (color[2], color[1], color[0])
|
||
|
||
result_image = add_background(
|
||
img,
|
||
bgr=color,
|
||
mode=render_choice[render],
|
||
).astype(np.uint8)
|
||
|
||
result_image = cv2.cvtColor(result_image, cv2.COLOR_RGB2BGR)
|
||
if kb:
|
||
result_image_bytes = resize_image_to_kb(result_image, None, int(kb), dpi=dpi)
|
||
else:
|
||
result_image_bytes = save_image_dpi_to_bytes(result_image, None, dpi=dpi)
|
||
|
||
result_messgae = {
|
||
"status": True,
|
||
"image_base64": bytes_2_base64(result_image_bytes),
|
||
}
|
||
|
||
return result_messgae
|
||
|
||
|
||
# 六寸排版照生成接口
|
||
@app.post("/generate_layout_photos")
|
||
async def generate_layout_photos(
|
||
input_image: UploadFile = File(None),
|
||
input_image_base64: str = Form(None),
|
||
height: int = Form(413),
|
||
width: int = Form(295),
|
||
kb: int = Form(None),
|
||
dpi: int = Form(300),
|
||
):
|
||
# try:
|
||
if input_image_base64:
|
||
img = base64_2_numpy(input_image_base64)
|
||
else:
|
||
image_bytes = await input_image.read()
|
||
nparr = np.frombuffer(image_bytes, np.uint8)
|
||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||
|
||
size = (int(height), int(width))
|
||
|
||
typography_arr, typography_rotate = generate_layout_array(
|
||
input_height=size[0], input_width=size[1]
|
||
)
|
||
|
||
result_layout_image = generate_layout_image(
|
||
img, typography_arr, typography_rotate, height=size[0], width=size[1]
|
||
).astype(np.uint8)
|
||
|
||
result_layout_image = cv2.cvtColor(result_layout_image, cv2.COLOR_RGB2BGR)
|
||
if kb:
|
||
result_layout_image_bytes = resize_image_to_kb(
|
||
result_layout_image, None, int(kb), dpi=dpi
|
||
)
|
||
else:
|
||
result_layout_image_bytes = save_image_dpi_to_bytes(result_layout_image, None, dpi=dpi)
|
||
|
||
result_layout_image_base64 = bytes_2_base64(result_layout_image_bytes)
|
||
|
||
result_messgae = {
|
||
"status": True,
|
||
"image_base64": result_layout_image_base64,
|
||
}
|
||
|
||
return result_messgae
|
||
|
||
|
||
# 透明图像添加水印接口
|
||
@app.post("/watermark")
|
||
async def watermark(
|
||
input_image: UploadFile = File(None),
|
||
input_image_base64: str = Form(None),
|
||
text: str = Form("Hello"),
|
||
size: int = 20,
|
||
opacity: float = 0.5,
|
||
angle: int = 30,
|
||
color: str = "#000000",
|
||
space: int = 25,
|
||
kb: int = Form(None),
|
||
dpi: int = Form(300),
|
||
):
|
||
if input_image_base64:
|
||
img = base64_2_numpy(input_image_base64)
|
||
else:
|
||
image_bytes = await input_image.read()
|
||
nparr = np.frombuffer(image_bytes, np.uint8)
|
||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||
|
||
try:
|
||
result_image = add_watermark(img, text, size, opacity, angle, color, space)
|
||
|
||
result_image = cv2.cvtColor(result_image, cv2.COLOR_RGB2BGR)
|
||
if kb:
|
||
result_image_bytes = resize_image_to_kb(result_image, None, int(kb), dpi=dpi)
|
||
else:
|
||
result_image_bytes = save_image_dpi_to_bytes(result_image, None, dpi=dpi)
|
||
result_image_base64 = bytes_2_base64(result_image_bytes)
|
||
|
||
result_messgae = {
|
||
"status": True,
|
||
"image_base64": result_image_base64,
|
||
}
|
||
except Exception as e:
|
||
result_messgae = {
|
||
"status": False,
|
||
"error": str(e),
|
||
}
|
||
|
||
return result_messgae
|
||
|
||
|
||
# 设置照片KB值接口(RGB图)
|
||
@app.post("/set_kb")
|
||
async def set_kb(
|
||
input_image: UploadFile = File(None),
|
||
input_image_base64: str = Form(None),
|
||
dpi: int = Form(300),
|
||
kb: int = Form(50),
|
||
):
|
||
if input_image_base64:
|
||
img = base64_2_numpy(input_image_base64)
|
||
else:
|
||
image_bytes = await input_image.read()
|
||
nparr = np.frombuffer(image_bytes, np.uint8)
|
||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||
|
||
try:
|
||
result_image = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
||
result_image_bytes = resize_image_to_kb(result_image, None, int(kb), dpi=dpi)
|
||
result_image_base64 = bytes_2_base64(result_image_bytes)
|
||
|
||
result_messgae = {
|
||
"status": True,
|
||
"image_base64": result_image_base64,
|
||
}
|
||
except Exception as e:
|
||
result_messgae = {
|
||
"status": False,
|
||
"error": e,
|
||
}
|
||
|
||
return result_messgae
|
||
|
||
|
||
# 证件照智能裁剪接口
|
||
@app.post("/idphoto_crop")
|
||
async def idphoto_crop_inference(
|
||
input_image: UploadFile = File(None),
|
||
input_image_base64: str = Form(None),
|
||
height: int = Form(413),
|
||
width: int = Form(295),
|
||
face_detect_model: str = Form("mtcnn"),
|
||
hd: bool = Form(True),
|
||
dpi: int = Form(300),
|
||
head_measure_ratio: float = Form(0.2),
|
||
head_height_ratio: float = Form(0.45),
|
||
top_distance_max: float = Form(0.12),
|
||
top_distance_min: float = Form(0.10),
|
||
):
|
||
if input_image_base64:
|
||
img = base64_2_numpy(input_image_base64)
|
||
else:
|
||
image_bytes = await input_image.read()
|
||
nparr = np.frombuffer(image_bytes, np.uint8)
|
||
img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED) # 读取图像(4通道)
|
||
|
||
# ------------------- 选择抠图与人脸检测模型 -------------------
|
||
choose_handler(creator, face_detect_option=face_detect_model)
|
||
|
||
# 将字符串转为元组
|
||
size = (int(height), int(width))
|
||
try:
|
||
result = creator(
|
||
img,
|
||
size=size,
|
||
head_measure_ratio=head_measure_ratio,
|
||
head_height_ratio=head_height_ratio,
|
||
head_top_range=(top_distance_max, top_distance_min),
|
||
crop_only=True,
|
||
)
|
||
except FaceError:
|
||
result_message = {"status": False}
|
||
# 如果检测到人脸数量等于1, 则返回标准证和高清照结果(png 4通道图像)
|
||
else:
|
||
result_image_standard_bytes = save_image_dpi_to_bytes(cv2.cvtColor(result.standard, cv2.COLOR_RGBA2BGRA), None, dpi)
|
||
|
||
result_message = {
|
||
"status": True,
|
||
"image_base64_standard": bytes_2_base64(result_image_standard_bytes),
|
||
}
|
||
|
||
# 如果hd为True, 则增加高清照结果(png 4通道图像)
|
||
if hd:
|
||
result_image_hd_bytes = save_image_dpi_to_bytes(cv2.cvtColor(result.hd, cv2.COLOR_RGBA2BGRA), None, dpi)
|
||
result_message["image_base64_hd"] = bytes_2_base64(result_image_hd_bytes)
|
||
|
||
return result_message
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import uvicorn
|
||
|
||
# 在8080端口运行推理服务
|
||
uvicorn.run(app, host="0.0.0.0", port=8080)
|